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Abstract
How do we prepare for an upcoming task? Cognitive
psychologists have modeled task preparation using dy-
namical systems theory, however the neural correlates
of these cognitive dynamics remain poorly understood.
Bridging between cognitive theory and neural recordings,
we used a statistical approach based on linear dynam-
ical systems to analyze human EEG recordings during
task switching. We found that the encoding of task infor-
mation changes dynamically over the preparation epoch,
supported by convergent evidence across both our novel
state space modeling and traditional encoding analyses.
These results provide a promising first step towards ex-
plicit process models of dynamic cognitive control.
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Introduction A longstanding literature in cognitive psychol-
ogy has described task preparation as a dynamic process that
configures information processing for the demands of an up-
coming task (Rogers & Monsell, 1995). Recent behavioral
modeling work has used dynamical systems theory to formal-
ize preparation as movement through a cognitive state space
toward an task-appropriate configuration (Musslick, Jang,
Shvartsman, Shenhav, & Cohen, 2018; Steyvers, Hawkins,
Karayanidis, & Brown, 2019; Jaffe, Poldrack, Schafer, & Bis-
sett, 2023). These theories make clear predictions that task
configuration dynamics will be implemented by trajectories
through a neural state space, however there has been little
work to date that explicitly tests this hypothesis (though see
Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015).

To test these the dynamic configuration hypothesis, we
re-analyzed a recent task-switching EEG experiment (Hall-
McMaster, Muhle-Karbe, Myers, & Stokes, 2019). We de-
veloped a novel application of latent state space modeling to
formalize participants’ EEG dynamics, providing a first step
towards rich process models of proactive control.

Task and Sample A complete description of the sample and
task are available in the original publication (Hall-McMaster
et al., 2019). Briefly, 30 human participants performed
a cued task-switching experiment while their brain activity
was recorded using 61-channel scalp EEG. Participants re-
sponded to a compound stimulus on the basis of either its
color (yellow or blue) or its shape (circle or square). Before
each stimulus, participants were cued as to whether the color
or shape was task-relevant (‘task cue’). Note that this experi-
ment included a reward condition that we do not analyze here.

Participants performed 10 blocks of 65 trials. We discarded
any trials preceding or following an error, or that were rejected
due to artifacts (leaving 469 trials on average). We used
the preprocessed EEG data from the original experiment, and
baselined electrodes by regressing out their average voltage
during each trial’s ITI (250ms - 50ms before trial onset).

Preparatory task encoding is dynamic We first validated
and extended the authors’ original analyses. We used En-

coding Geometry Analysis (Ritz & Shenhav, 2022) to examine
how task information was encoded during the cue period, test-
ing the cross-validated reliability of multivariate encoding pro-
files. We regressed a design matrix with task identity (color
vs shape) and cue identity (with two cue stimuli per task) on
the 61-channel voltages at each timepoint, producing a time-
series of encoding profiles (channel-wise patterns of regres-
sion weights). We then tested when these patterns were re-
liable by correlating encoding profiles across even and odd
blocks (a powerful alternative to traditional encoding valida-
tion, Ritz & Shenhav, 2022).

Replicating the original experiment, we found that task in-
formation was robustly encoded during the task cue period
(Fig 1A), consistent with proactive implementation of a task
set (Siegel, Buschman, & Miller, 2015). We next measured
how stably task information was encoded by testing the simi-
larity of task-encoding profiles across time (i.e., temporal gen-
eralization, King & Dehaene, 2014). We correlated encoding
profiles across timepoints (and blocks), finding that task en-
coding changed dynamically over the course of the cue period
(Fig 1B; i.e., had a largely diagonal). Together, these analy-
ses show that there is robust encoding of task information, and
that task representations dynamically change over time. We
next sought to characterize task dynamics with a generative
state space model.
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Figure 1: Task encoding. A) Task identity was reliably en-
coded. Y-axis reflect group-level effect size on cross-validated
encoding reliability (Cohen’s d), x-axis reflect time. Task cues
were abstract shapes. Encoding traces are smoothed for vi-
sualization. B) Task encoding poorly generalized across time.
Axes reflect same time period as panel A, color reflects the
group-level effect size on cross-validated encoding alignment.

State space modeling of neural activity State space mod-
els are a statistical model of neural population activity that has
growing popularity in computational neuroscience (Smith &
Brown, 2003; Macke et al., 2011; Linderman, Nichols, Blei,
Zimmer, & Paninski, 2019). They model time series data as
arising from a set of unobserved variables, and allow us to
learn the evolution of these variables over time. Here, we
model participants’ EEG data using a linear dynamical sys-
tem (LDS) model of latent neural trajectories.

An LDS describes yt , the vector of neural activity at time t,
as arising from the linear projection of a D-dimensional la-



tent state xt . Formally, yt = Cxt + vt where C is a matrix
of projection weights and vt ∼ N (0,R) is Gaussian noise.
The latent state xt itself evolves linearly over time according
to a dynamics matrix A and driven by inputs ut , as follows:
xt = Axt−1 +But−1 +wt , where wt ∼ N (0,Q) is Gaussian
noise. {A,B,C,Q,R} are the parameters of the LDS, describ-
ing the latent states dynamics, effect of inputs, projection of
the latent states to the observed space, noise covariance of
the latent states, and the observation noise, respectively.

We fit LDS models to each of our 30 participants using
a custom analysis pipeline in Julia (partially ported from the
SSM toolbox; Linderman, Antin, & Zoltowski, 2020). We es-
timated the LDS parameters using expectation-maximization,
which in this case has an efficient analytic solution. The di-
mensionality of the latent state was selected by fitting LDS
models at varying number of dimensions and selecting the
model that maximizes the likelihood of a test set. We validated
that our analysis pipeline could accurately recover latent tra-
jectories in simulated data.

Neural dynamics of task encoding We estimated a se-
ries of input vectors in 10 equally spaced time bins across
the Cue-Stimulus Interval (excluding the first and last 50ms).
Each time bin included both a condition-independent input and
task-dependent input. We report the model performance over
four levels of latent dimensionality (spaced between 1 and 45
dimensions), but these trends were apparent at intermediate
levels.

We found that the model’s cross-validated fit increased with
dimensionality (Fig 2A; confirmed with SSM toolbox). Over-
all, the LDS model was very accurate at reproducing single-
trial EEG timeseries (Fig 2B), using the standard approach
of Kalman smoothing with the estimated parameters. These
predictions improved with more training data and, in simu-
lation, with better fit to ground-truth parameters. We found
that while task-independent inputs were very stable over the
epoch, task-encoding dimensions changed over the course of
the epoch (Fig 2C). After initial separation (likely due to dif-
ferences in initial conditions), task discriminability remained
relatively constant over the course of the epoch (Fig 2D).
This task-specific encoding was apparent in dimensionality-
reduced latent trajectories (Fig 2E).

Conclusions These exploratory analyses support the dy-
namic account of task preparation proposed by cognitive the-
ories. While cognitive theories typically describe homoge-
neous dynamics towards a fixed location in cognitive space,
we find that task subspaces are transformed over the prepa-
ration epoch. Future work should compare different models
of task dynamics, and leverage this approach for spatially-
resolved data (e.g., MEG). Together, the dynamical systems
analyses deployed here are a first step towards observing the
kind of neural dynamics that to date have only been mea-
sured using invasive recordings, opening the opportunity for
richer process model of how people align neural information
processing with cognitive task demands.

Figure 2: State Space Dynamics. A) Test-set likelihood across
latent dimensionality. B) Example test-set trial timeseries,
showing a subset of electrodes. Black reflects observed volt-
age timeseries, red reflects model predictions. Traces are off-
set along the y axis. C) Correlation of B across latent modes,
reflecting alignment of condition-independent (left) and task-
dependent (right) enocoding profiles across time bins. D)
Standard deviation of B over latent modes, reflecting the
magnitude of task encoding. E) Estimated latent trajectories
(x1:T ) for two example participants, averaged within-task and
dimensionality-reduced using SVD. Circles indicate endpoints.
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