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When faced with distraction, we can focus more on goal-relevant information (targets) or focus less on goal-
conflicting information (distractors). How people use cognitive control to distribute attention across targets
and distractors remains unclear. We address this question by developing a novel Parametric Attentional
Control Task that can “tag” participants’ sensitivity to target and distractor information. We use these
precise measures of attention to develop a novel process model that can explain how participants control
attention toward targets and distractors. Across three experiments, we find that participants met the demands
of this task by independently controlling their processing of target and distractor information, exhibiting
distinct adaptations to manipulations of incentives and conflict. Whereas incentives preferentially led to
target enhancement, conflict in the previous trial preferentially led to distractor suppression. These distinct
drivers of control altered sensitivity to targets and distractors early in the trial, promptly followed by reactive
reconfiguration toward task-appropriate feature sensitivity. To provide a process-level account of these
empirical findings, we develop a novel neural network model of evidence accumulation with attractor
dynamics over feature weights that reconfigure target and distractor processing. These results provide a
computational account of control reconfiguration that provides new insights into how multivariate
attentional signals are optimized to achieve task goals.
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Whether we are having a conversation in a crowded coffee shop or
writing an article at our desk while surrounded by browser tabs, most
tasks require us to engage in two distinct forms of attentional control.1

One form of control enhances the processing of task-relevant
information, for instance by paying careful attention to what our
conversation partner is sharing with us. The other form of control
suppresses the processing of task-irrelevant information, particularly
that which conflicts with our primary goal (e.g., a distraction from a
nearby conversation). While past research has extensively studied
target and distractor processing, it has done so primarily by focusing
on each one separately. As a result, relatively little is known about how

control over task-relevant information (targets) interacts with control
over task-irrelevant information (distractors). Can people control
multiple forms of information processing, and if so, how do they
regulate these information streams over time?Here, we bridge previous
methodological gaps to gain new insight into the top-down control of
target and distractor processing, providing an integrative model of how
dynamic control adjustments could occur within and across trials.

Research into how people enhance the target of their attention
versus actively suppress distractors has been largely governed
by separate research areas, using different approaches. Studies of
perceptual decision making have characterized the process by which
people try to determine the correct response (e.g., which of two
categories this stimulus belongs to) based on noisy information about a
target stimulus and have examined how this varies with the difficulty
of discriminating that stimulus (e.g., how perceptually similar two
stimuli are; Britten et al., 1992; Gold& Shadlen, 2007). This contrasts
with studies of inhibitory control, in which the correct response to a
target is typically unambiguous (e.g., respond left when seeing a high-
contrast leftward-facing arrow), but a second dimension of the
stimulus display (one that is typically processed more automatically;
e.g., flanking arrows pointing rightward) triggers a conflicting
response (Botvinick & Cohen, 2014; Posner & Snyder, 1975).
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1 Throughout, we refer to “cognitive control” as the process that
configures information processing to achieve task goals (Botvinick &Cohen,
2014). Whereas cognitive control refers to all such adjustments, such as
changes to stimulus sensitivity or decision threshold, we reserve “attentional
control” for just the top-down control over stimulus sensitivity.
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Despite the substantial progress that has been made in understand-
ing these two processes in parallel, critical questions remain that can
only be addressed by studying them in tandem (Ritz et al., 2022; see
also Frömer & Shenhav, 2022). Most notably, it is unclear how people
decide how to distribute their control between targets and distractors.
When the demands or incentives for performing a task change, do
people redirect control toward target enhancement, distractor
suppression, or both? For instance, previous work has shown that
people are less susceptible to the influence of distractors after
overcoming a previously conflicting distractor (the so-called conflict
adaptation or congruency sequence effect; Gratton et al., 1992).
Prevailing models have accounted for these findings by assuming that
participants increase attention to the target dimension following a high-
conflict trial (Botvinick et al., 2001; Egner, 2007), but limitations of the
relevant experiments (e.g., most experiments do not manipulate target
salience; through see Lindsay & Jacoby, 1994; Servant et al., 2014;
Stafford et al., 2011) make it difficult to rule out that adaptation may
also occur at the level of distractor suppression (Lindsay & Jacoby,
1994; Tzelgov et al., 1992). It is more generally an open question
whether effects of recent task difficulty (e.g., low discriminability or
high conflict) result in control-specific or control-general adaptations
and, similarly, whether the motivation to improve performance in such
settings leads to preferential engagement of one or both forms of
control. Cognitive control is fundamentally an adaptive process, so
people’s specific control policies should depend on the task structure
(Botvinick & Cohen, 2014; Egner, 2008). However, understanding
how people coordinate multiple forms of information processing can
help inform the architecture of the underlying control process (Ritz et
al., 2022).
One way that previous research has studied target and distractor

adjustments is to measure changes in brain activity associated
with task-relevant stimulus processing. For example, some
previous work has suggested that conflict-triggered control
preferentially enhances sensitivity in regions associated with
target stimuli (e.g., faces in fusiform face gyrus; Egner & Hirsch,
2005). Other studies have found evidence for both target and
distractor control by using similar stimulus-tagging methods
(Gazzaley et al., 2005; Soutschek et al., 2015) or by exploiting
lateralized electroencephalogram responses (Noonan et al., 2016;
Wöstmann et al., 2019). The range of results across these
neuroimaging experiments may come from the different tasks that
have been deployed (Egner, 2008) but may also arise from noisy
or complex correspondence between neuroimaging methods and
underlying cognitive processes. In the current experiment, we
provide new methods for indexing target and distractor sensitivity
from behavior alone, enabling us to provide new insight into the
cognitive architecture of feature-selective control.
Recent models of controlled decision making have emphasized the

role that within-trial attentional dynamics play in response conflict
tasks, offering new insight into the implementation of cognitive
control (Servant et al., 2014;Weichart et al., 2020;White et al., 2011;
Yu et al., 2009). These models have largely focused on the Eriksen
flanker task, modeling how an attentional spotlight centered on the
target item narrows over time. This formulation necessarily yokes
target enhancement and distractor suppression due to the spatial
spread of attention. As a result, little is known about whether target
and distractor processing dynamics can fall under independent
control when these are not explicitly yoked, as in the case of feature-
based attention. Less still is known about how adjustments driven by

factors like conflict adaptation and incentives alter the dynamics of
target and distractor processing (Adkins & Lee, 2021).

To address these questions, we developed a novel task that
orthogonally varies target and distractor information, measuring
how processing of these two dimensions varies both within and
across trials. Our task merges elements of paradigms that have been
separately popularized within the two research areas above. To
capture variability in target processing, we based our task on the
random-dot kinematogram paradigm (Danielmeier et al., 2011;
Kang et al., 2021; Kayser et al., 2010; Mante et al., 2013; Shenhav
et al., 2018). This task parametrically varies the motion
discriminability (e.g., percentage of dots moving left) and color
discriminability (e.g., percentage of green dots) across an array of
dots. Participants were instructed to respond to the color dimension
while ignoring the motion dimension. Critically, whereas color
response mappings were arbitrary (e.g., left hand for green), motion
responses were exactly aligned with the direction of motion (e.g.,
left hand for leftward moving stimuli), resulting in potent “Simon-
like”2 response interference from this prepotent distractor. A salient
incongruent distractor provokes an erroneous response, providing a
qualitatively different form of difficulty from how low-coherence
targets make it harder to choose the correct answer (Norman &
Bobrow, 1975).

Previous work has demonstrated response conflict and trial-to-
trial adjustments in a color–motion kinematogram with full target
coherence and binary distractor congruence (Danielmeier et al.,
2011).We extended this task by parametrizing both target coherence
and distractor congruence. In doing so, we are able to obtain more
precise measures of feature sensitivity by accounting for global
performance factors (e.g., lapse rate; Wichmann & Hill, 2001).
Importantly, however, we can also isolate how participants
simultaneously configure attention toward each of these feature
dimensions. Using standard elicitors of cognitive control, namely
performance-contingent incentives and response conflict, we
examine how people dynamically configure both target and
distractor gain to maximize their performance. We then use the
precision afforded by these methodological advances to inform an
explicit process model of attentional control.

We find that participants independently and dynamically control
target and distractor processing over the course of a trial. Tomeet the
demands of this task, participants preferentially enhanced target
sensitivity under incentives and preferentially suppressed distractor
sensitivity after high-conflict trials. Moreover, they implement these
control strategies by changing the initial conditions of a dynamic
process that enhances task-relevant feature processing and sup-
presses task-irrelevant feature processing. Finally, we find that these
control strategies can be captured by extending classic neural
network models of cognitive control to incorporate an attractor
network that dynamically regulates the influence of different task
features on choice. Together, these results extend our understanding
of both decision making and cognitive control by bridging the
methodological and theoretical divides between these fields,
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2 The Simon task is a classic cognitive control task in which participants
must ignore a response-affording stimulus feature (e.g., respond “left” to a
leftward spatial location) and instead respond to a less prepotent stimulus
feature (e.g., respond “right” to a blue stimulus). The classic pattern of results
is that participants perform more poorly when these two features disagree
than when they correspond to the same response (see Egner, 2007).
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providing new insight into how we control multiple forms of
information processing.

Method

Participants

All participants provided informed consent in compliance with
Brown University’s institutional review board, participating for either
course credit or pay. We excluded participants from our analyses if
they had<70% accuracy during attend-color blocks or completed less
than half of the experiment. Fifty-seven individuals participated in
Experiment 1, M(SD) age: 20.6(2.21); 36 female; one excluded, 42
individuals participated in Experiment 2, age: 19.1(0.971); 31 female;
two excluded, and 62 individuals participated in Experiment 3, age:
19.8(1.38); 47 female; two excluded, resulting in 156 included
participants across the three experiments. Sample sizes were guided
by piloting in Experiment 1 and experimental standards in cognitive
control research (commonly n = 20–40; e.g., Adkins & Lee, 2021;
Danielmeier et al., 2011; Jiang et al., 2015; Vogel et al., 2020; White
et al., 2011).

Parametric Attentional Control Task

We developed the Parametric Attentional Control Task (PACT),
extending tasks used to study decision making (Kang et al., 2021;
Mante et al., 2013; Shenhav et al., 2018) and cognitive control
(Danielmeier et al., 2011). On each trial, participants viewed an array
of moving dots (i.e., random-dot kinematogram), presented in one of
four colors (see Figure 1). Participants were taught to match two
colors to a left keypress and two colors to a right keypress (with colors
counterbalanced across participants). The majority of color did not
repeat on adjacent trials to avoid priming (Braem et al., 2019).
The direction of the dot motion (leftward or rightward) was task

irrelevant and could be consistent with the color response (distractor
congruent trials) or it could be inconsistent with this response
(distractor incongruent trials). Uniquely in this experiment, we
parametrically varied the degree of distractor congruence on each
trial by varying the motion coherence (percentage of dots moving in
the same direction vs. moving in a random direction). Distractor
congruence was linearly spaced between 95% congruence and 95%
incongruence, sampled randomly across trials. For variants with 11
levels of congruence, the congruence levels were −95, −76, −57,
−38, −19, 0, 19, 38, 57, 76, 95, with negative values being
incongruent and positive values being congruent. We made the
motion highly salient to maximize the conflict induced by this
distracting dimension (Wöstmann et al., 2021), with dots moving
quickly across a large aperture.
In Experiment 1, all of the dots were the same color (100% color

coherence), creating a parametric extension of the Simon conflict
tasks (Danielmeier et al., 2011). In Experiments 2 and 3, the dots
contained a mixture of two colors associated with different
responses. Color coherence was linearly spaced between 65%
and 95%, drawn randomly across trials.
To maintain the salience of the motion dimension throughout

the session (Shiffrin & Schneider, 1977), participants alternated
between blocks of the task above (“attend-color” trials, putatively
more control-demanding) and blocks where participants were

instructed to instead indicate the direction of the dot motion
(“attend-motion” trials, putatively less control-demanding). Mirror-
ing the attend-color blocks, in Experiment 1, we held the motion
coherence constant (maximal) during attend-motion blocks while
varying the color coherence across trials. In Experiments 2 and 3, we
varied the coherence of both dimensions during attend-motion
blocks. In attend-motion trials, we allowed distractor colors to repeat
on consecutive trials, mirroring the stimulus repetitions that
occurred in attend-color blocks.

Comparing performance across tasks that are matched for visual
and motoric demands also allows us to test whether behavioral
effects depend on stimulus or response confounds. For example,
participants’ behavior may be influenced by eye movement
confounds (e.g., bottom-up attentional capture by motion coher-
ence), response repetition biases (e.g., due to responses switching
more often than repeating), or stimulus–response priming (e.g., due
to how response switching coincides with stimulus transitions).
Critically, attend-color and attend-motion tasks differ in their
putative control demands, allowing us to isolate stimulus–response
confounds from goal-directed control.

Session

Participants first performed 100 motion-only training trials
(0% coherent color) and 100 color-only training trials (0%
coherent motion; order counterbalanced across participants) to
learn the stimulus–response mappings. During training, partici-
pants received accurate feedback on every trial. During the
main experiment, participants performed two types of interleaved
blocks, without trial-wise feedback. Participants alternated
between longer attend-color blocks (100 trials) and shorter
attend-motion blocks (Experiment 1: 20–50 trials; Experiments
2–3: 30 trials; order counterbalanced across participants). In
Experiments 1 and 2, at the end of each block, participants were
told their average accuracy and median reaction time (RT) and
encouraged to respond quickly and accurately. Participants were
not given this information in Experiment 3 to avoid interactions
with the incentive manipulation (see below). Participants took self-
timed breaks between blocks.

Stimuli

Participants were seated approximately 60 cm from a computer
screen, making their responses on a customizable gaming keyboard
in a dark testing booth. The random-dot motion array was
presented in the center of the screen (∼15 visual degrees in
diameter; ∼66.8 dots per visual degree squared; 19” LCD at 60
Hz). The dots colors were approximately (uncalibrated) isolumi-
nant and perceptually equidistant (RGB values: [187, 165, 222],
[150, 180, 198], [192, 169, 168], [157, 184, 130]; Teufel &
Wehrhahn, 2000) and moved at ∼15 visual degrees per second.
Each trial started with a random intertrial interval (Experiment 1:
0.5–1.5 s; Experiments 2–3: 0.5–1.0 s). There was an alerting cue
300 ms before the trial onset, indicated by the fixation cross turning
from gray to white, to minimize nondecision time. The stimuli
were then presented until either a response was made or a deadline
was reached (Experiment 1: 3 s; Experiments 2–3: 5 s).
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Task Variants

Experiment 1: These data incorporate several similar versions of
this task developed during piloting. The main differences across
versionswere the number of distractor congruence levels,M(range)=
13.5(11–15), the number of trials per attend-motion block,
M(range) = 26(20–50), and the total number of trials, M(range) =
469(300–700) attend-color trials. We did not find significant
differences in performance across versions, and so our analyses
collapsed across these versions. Experiment 1 also included a
learning condition in a separate set of blocks, which was outside the
scope of the current article and not included in the analyses we report.
Experiments 2 and 3: These data come from a single-task variant

(though see Experiment 3’s incentive manipulation below). In this
variant, we presented participants with 11 levels of target coherence
and 11 levels of distractor congruence, linearly spaced within their
coherence range and randomly sampled across trials. Participants
performed 12 blocks of 100 attend-color trials interleaved with
12 blocks of 30 attend-motion trials. Illustrative task instructions
are provided in Supplemental Material Note 1.

Incentivized Variant (Experiment 3)

In Experiment 3, we studied task performance under monetary
incentives to provide a convergent measure of control adjustments, to
test where task processing was limited by motivation rather than hard
constraints like stimulus information (Norman & Bobrow, 1975). We
informed participants before the main session that they would be able
to earn amonetary reward for good performance. On “reward” blocks,
we randomly selected trials at the end of the experiment, and
participants earned bonus payment for trials on which they were both
fast (<75% of their RT distribution) and accurate. On “no reward”
blocks, participants would not be eligible to earn a reward but were
encouraged to be fast and accurate. We indicated the incentive
condition at the beginning of each block with a label and text coloring
(gold text for “reward,”white text for “no reward”). Participants were
not instructed on the reward algorithm, only that they would earn
rewards from being fast and accurate on randomly selected trials.
Participants were not informed which trials were selected to avoid
biasing postreward trials. Participants performed attend-color and
attend-motion blocks in one incentive condition before alternating to
the other incentive condition (order counterbalanced across partici-
pants). At the end of the experiment, participants received a bonus
calculated from their performance, M(SD) bonus: $2.5($0.57)USD.

Regression Analyses

We used a hierarchical nonlinear regression of choice and
reaction time as a tractable and minimally theory-laden measure of
performance (Supplemental Figure 1). We designed these regression
models to quantify changes to target and distractor sensitivity while
controlling for global factors like behavioral autocorrection and how
task factors may change lapse rates. The results of these regression
analyses then provided the basis for our explicit process modeling
(see below).We confirmed that our regressionmodels are identifiable
using Belsley’s collinearity diagnostics (collintest in MATLAB;
Supplemental Table 10).
In particular, we implemented hierarchical expectation maximi-

zation in MATLAB R2020a (using emfit; available at https://github

.com/mpc-ucl/emfit) to provide a maximum a posteriori (MAP)
estimates for the mean and covariance of parameters linking task
features to participants’ reaction time and accuracy. This fitting
algorithm alternates between finding the MAP estimates of
participants’ parameters given the current group-level expectations
(M-step; with five parameter reinitialization per step) and updating
this group-level expectation based on participants’ estimated
parameters (E-step), repeated until convergence. We fit separate
regression to each experiment for independent replications of our
findings. The analysis code is available at https://github.com/shenha
vlab/PACT-public.

Our regression approach simultaneously estimated parameters for
choice and RT:

logPost = logLikeðChoiceÞ + logLikeðRTÞ
+ logPriorðChoice, RTÞ: (1)

Our choice subfunction used a lapse-logistic likelihood function,
as previous work has shown that un-modeled lapse rates can mimic
changes in psychometric slope (Wichmann & Hill, 2001). Our
choice subfunction had the form:

Choice∼
1 − lapse

1 + expð− βChoiceXChoiceÞ
+ ðlapse × 0.5Þ, (2)

lapse =
1

1 + expð− βLapseXLapseÞ
, (3)

Where βChoice and βLapse are parameter vectors, and XChoice and
XLapse are design matrices. Our RT subfunction used a shifted
log-normal likelihood function:

logðRT − ndtÞ∼ βRTXRT, (4)

Where again βRTXRT is a linear model, and ndt is the estimated
nondecision time. Rare RTs less than ndt were assigned a small
likelihood. This helped avoid one fast RT from unduly influencing
this parameter, while still capturing these informative trials.

Finally, the prior probability of the parameters was evaluated
under a multivariate normal distribution defined by the group-level
parameter mean and covariance, improving the robustness of our
estimates through regularization. Critically, we estimated this
group-level covariance across both choice and RT parameters,
which better regularized our estimates and produced a joint model of
performance at the group level.

All regression designmatrices included an intercept (choice bias or
average RT), an autoregressive component (previous trial’s choice or
RT), and the transformed target and distractor coherence (scaled
between −1 and 1). We included autoregressive components to
capture well-established behavioral features like choice repetition
and RT autocorrelation (Egner, 2007; Laming, 1979; Lau &
Glimcher, 2005; Urai et al., 2019). We transformed feature
coherences using a saturating nonlinearity,

coh*feature =
tanhðαfeature × cohfeatureÞ

tanhðαfeatureÞ
, (5)

with αtarget and αdistractor fit as free parameters. This nonlinearity
was inspired by classical work on psychophysical scaling laws
(i.e., Fechner–Weber–Stevens scaling, Krueger, 1989; Nieder &
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Miller, 2003) and more recent work demonstrating this scaling
during cognitive control experiments (Servant et al., 2014;
Stafford et al., 2011). This approach distinguishes the coherence
nonlinearity (α) from how strongly coherence influences perfor-
mance (βChoice and βRT), with our analyses focused on the latter.
To constrain these α parameters, we estimated one parameter for
both choice and RT, capturing similar nonlinearities across both
performance measures.
In our more complex models (e.g., incentives), our primary focus

was on how additional task features moderated the influence of tanh-
transformed feature coherence on performance. Lower order effects
of moderating factors (e.g., previous distractor congruence) were
included in the lapse rate for choice analysis and as a main effect in
RT analyses. The full parameter sets for all analyses are available in
Supplemental Material.
We excluded trials in our regression if they were (a) the first trial

of the block, (b) shorter than 200 ms or longer than 2 s, (c) occurred
after an error or after a trial was too fast/slow, and (d) in reaction time
analyses, if the current trial was an error. These exclusion criteria
were chosen to be inclusive while avoiding trials where there were
likely to be a mixture of different cognitive processes (e.g., posterror
adjustments).
We performed statistical inference on the parameters using

an estimate of the group-level error variance from the emfit package,
necessary to avoid violations of independence across participants
from our hierarchical modeling. Contrast tests across models used
Welsh’s (unequal variance) t tests, with contrasts weighting studies
by the square root of the sample size. We aggregated p values across
studies using Lipták’s method (Lipták, 1958; Zaykin, 2011),
weighting studies by the square root of their sample size. Correlations
between parameters were calculated by converting the group-level
MAP covariance matrix to a correlation matrix.
We generated posterior predictive checks (trend lines on figures)

by generating regression model predictions for all trials and
then aggregating these predictions in the same way as participants’
raw behavior. This approach allows us to distinguish whether
our model systematically deviates from behavior from whether
deviations are driven by variability in parameters across partici-
pants. To provide finer-grained insights into our model fit, we
generated additional posterior predictive checks that aggregate
trends across all participants (Supplemental Figure 6) and that
highlight single participants (Supplemental Figure 7). To provide
further validation of the robustness of our parameter estimation
procedure, we performed parameter recovery (simulated behavior
from our best-fitting regression parameters, refit our model to this
simulated behavior, and the compared data-generating and
recovered parameters; Supplemental Figure 8) and parameter
knockout analyses (refit models with key nuisance regressors
removed; Supplemental Figure 9). These robustness checks provided
convergent evidence that our key parameters had good identifiability.
We generated sensitivity dynamics plots (e.g., Figure 6) by

computing the regression-estimated coherence effect conditioned on
RT. For a range of simulated RTs, the estimated motion sensitivity
time series is:

βRTmotion = ðβmotion + βmotion:RTSimRTÞ⊙ð1 − lapseRTÞ, (6)

lapseRT =
1

1 + expð− ðβLapse + βRTSimRTÞÞ , (7)

Where βs are regression weights estimated in our analysis,
SimRT is a vector of simulated RTs (e.g., .5:.01:1), and ⊙ indicates
element-wise multiplication. For control-dependent dynamics
(i.e., incentivized dynamics; see Figure 7), we included two-way
and three-way interactions between feature sensitivity, RT, and
control drivers. We generated these sensitivity dynamics for each
participant and then plotted the mean and between-participant
standard error.

Feedforward Inhibition With Control Model

To provide a bridge between our regression analyses and process
models of decision making, we adopted a generative modeling
approach and tested whether participant behavior could be reproduced
by a sequential sampling model (Figure 8). This model was inspired
by two theoretical traditions. The first was a classic connectionist
model of cognitive control (Cohen et al., 1990), which demonstrated
how—top-down adjustments to target and distractor sensitivity in
evidence accumulation framework can capture a wide range of
behavioral phenomena. To capture apparent within-trial adjustments
to feature processing (see the Results section), our second inspiration
was from dynamical models of task set reconfiguration, both across
trial (Gilbert & Shallice, 2002; Musslick et al., 2018; Steyvers et al.,
2019) and within trial (Mante et al., 2013; Pagan et al., 2022). In these
dynamic models, adjustments in feature gain behave as a dynamical
system, starting at some initial condition and exponentially
approaching a fixed point.

This model takes as inputs the color and motion coherence
in support of different responses (e.g., color coherence supporting
a left response: cohcolLeft), nonlinearly transforms these inputs
(e.g., coh*colLeft; see the Regression Analyses section in Methods),
and then integrates evidence for each response in separate rectified
accumulators (xleft and xright).

For example, the change in evidence for the left response
is modeled as:

dxleft = −λxleftdt + ðβcolcoh*colLeftdt + βmotcoh
*
motLeftdt + εleft

ffiffiffiffi
dt

p
Þ

− ωðβcolcoh*colRightdt + βmotcoh
*
motRightdt + εright

ffiffiffiffi
dt

p
Þ; (8)

where εleft ∼ N(0, σx), εright ∼ N(0, σx), and xleft = max(0, xleft). The
model makes a choice when one of the accumulators reaches a
linearly collapsing decision bound rectified above 0.01. We used
a balanced feedforward inhibition model without leak (λ = 0 and
ω = 1), approximating a (rectified) drift-diffusion model (DDM;
Bogacz et al., 2006). Note that parameterizations of a leaky
competing accumulator could also approximate the DDM (Bogacz
et al., 2006, 2007) and so are plausible alternatives to our
implementation. We preferred the feedforward inhibition (FFI)
model because it provides a simple interpolation between DDM and
race-like decision processes.

To capture dynamics in participants’ feature sensitivity, we
modified our accumulation model to incorporate an attractor
network for the feature weights (Mante et al., 2013), a model we
call the feedforward inhibition with control model (FFIc model).
In this model, control acts like a stochastic dynamical system.
The system starts at an initial level of feature gain (β0; e.g., due
to bottom-up salience or learning). This feature gain exponentially
approaches an asymptotic gain level (its “fixed point”;
e.g., a set point on zero distractors gain), according to a decay
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rate K (e.g., control gain). For example, the change in motion gain
is modeled as:

dβmot = −γβmotdt + Kmotðfixedpointmot − βmotÞ + εgain
ffiffiffiffiffiffi
dt,

p

εgain ∼Nð0, σgainÞ, (9)

With the leak term, γ fixed to 0 as in the decision process.
We simulated 10,000 trials for each combination of target

discriminability and distractor congruence (11 × 11 × 10,000) and
then aggregated simulated behavior in the same way we aggregated
participants’ behavior. Simulation code and parameter sets are
available at https://github.com/shenhavlab/PACT-public.

Transparency and Openness

We report howwe determined our sample size, all data exclusions,
all manipulations, and all measures in the study, and we follow APA
Journal Article Reporting Standards (Appelbaum et al., 2018). All
data and analysis code are available at https://github.com/shenhavla
b/PACT-public. This study’s design and its analysis were not
preregistered.

Results

Participants performed PACT, a perceptual discrimination task
that required them to classify the dominant color in an array of
moving dots (Figure 1A). Participants made bimanual responses, for
example, responding with their left hand when the dominant color
was purple or blue or responding with their right hand when the
dominant color was green or beige. To avoid stimulus repetition
priming (Braem et al., 2019; Mayr et al., 2003), two colors were
assigned to each response and the majority of color did not repeat
across sequential trials. Across trials, we varied the extent to which
those dots were coherently moving in the same or opposite direction
as the correct response (distractor interference; Experiments 1–3)
and how easily the participant could determine the dominant color
(target discriminability; Experiments 2–3; Figure 1B). Participants
performed the main attend-color PACT in blocks of 100 trials.
To enhance the potency of motion as a distracting dimension
(Shiffrin & Schneider, 1977) and allow for additional measures of
automaticity and feature specificity, participants alternated between
these blocks of interest and shorter blocks (20–50 trials) in which
participants instead responded to the direction of dot motion (attend-
motion PACT; Figure 1C).
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Figure 1
Parametric Attentional Control Task (PACT)

(A)

(C) (D)

(B)

Note. (A) On each trial, participants responded to the dominant color in a bivalent random-dot kinematogram.
This stimulus had a random color (target) coherence, depending on the proportion of dots that were in themajority.
This stimulus also had a random motion (distractor) congruence, depending on motion coherence in the same or
opposite direction as the color response. (B) Across trials, we parametrically and independently varied the
coherence of the dominant color (y-axis) and the congruence of the motion direction (x-axis). (C) In Experiments 1
and 2, participants alternated between longer blocks of attend-color trials (target dimension was color, as in A) and
shorter blocks of attend-motion trials (target dimension was motion). Participants took a self-timed break between
blocks. (D) In Experiment 3, participants alternated between pairs of reward blocks and no reward blocks. On
reward blocks, participants could earn a monetary bonus if they were fast and accurate, whereas we just encourage
good performance on no reward blocks. Participants were informed of the reward condition during their break
between blocks. Exp= experiment; ITI= intertrial interval; RT= reaction time. See the online article for the color
version of this figure.
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Task Performance Varies Parametrically With Target
Discriminability and Distractor Interference

In Experiment 1 (N = 56), participants performed the PACT with
uniformly colored dots (e.g., all blue or all green), but with the dots
moving in a direction either congruent or incongruent with that
target response. We varied the strength of this distractor dimension
between being fully congruent with the correct color response
(100% leftward coherence for a left color response) and being fully
incongruent (100% rightward coherence for a left color response;
Figure 1D). For trials midway between these two extremes
(“neutral” trials), the dots did not move consistently in one
direction or another (0% motion coherence).
Consistent with past research on cognitive control, we found that

participants were slowest and least accurate when distractors were
fully incongruent (median RT= 585ms, mean accuracy= 89%) and
were fastest and most accurate when distractors were fully
congruent (median RT = 553 ms, mean accuracy = 97%) (cf.
Danielmeier et al., 2011). Performance on neutral trials (0% motion
coherence) fell between these two extremes (median RT = 576 ms,
mean accuracy = 94%). Extending past work, hierarchical
regression analyses (see the Method section) revealed that
performance varied in a graded fashion across this continuum of
interference. Both accuracy (Cohen’s d on regression estimate; d =
−1.47) and reaction time (d = 1.25) worsened with parametrically
increasing levels of interference (ps < .001, Figure 2C, Table 1).
In Experiment 2 (N = 40) and Experiment 3 (N = 60), participants

performed the same task as in Experiment 1, but we additionally
varied the discriminability of the target (color) dimension. Across
trials, the proportion of the majority color (color coherence) varied
parametrically to make color discrimination easier (higher coherence)
or more difficult (lower coherence). As in Experiment 1, the level of
motion interference also varied across trials, independently of targets.
Consistent with past research on perceptual decision making

(Britten et al., 1992; Mante et al., 2013), we found that
discrimination performance improved with higher levels of target
discriminability. Participants in both studies were faster (Experi-
ment 2: d = −1.90, Experiment 3: d = −1.99) and more accurate
(Experiment 2: d = 3.27, Experiment 3: d = 3.73) with
parametrically increasing levels of color coherence (aggregate
ps < .001; Figure 2A, Table 1). At the same time, we continued to
find that participants were slower and less accurate when the goal-
irrelevant movement of those dots was increasingly incongruent
with the correct color response (see Figure 2A, Table 1).
Performance on our task varied parametrically with both color

coherence and motion coherence, but these two coherence
manipulations were designed to exert their influence on performance
in different ways. Whereas variability in color coherence was
intended to influence the stimulus uncertainty directly relevant to
goal-directed decision making (i.e., determining which response is
the correct one), motion coherence was intended to exert a more
automatic influence on response selection by facilitating responses
consistent with the direction of motion. We confirmed this
assumption regarding the relative automaticity of motion versus
color processing by having participants perform interleaved blocks
in which they responded based on motion and ignored color
(“attend-motion”). We found that participants were more sensitive

to the now-relevant motion coherence (Figure 2E) but were no
longer sensitive to the now-irrelevant color congruence (Figure 2G;
Supplemental Tables 1 and 2). This asymmetry suggests that
participants’ decisions were not solely driven by the bottom-up
salience of these features, as participants were more sensitive to
color when it was relevant and less sensitive to motion when it was
irrelevant, reflecting differential engagement of top-down control
across the two tasks (Cohen et al., 1992).

Target Discrimination and Distractor Interference
Occur in Parallel

We found that participants’ task performance varied parametri-
cally with both the target discriminability and distractor congruence,
both for choice and reaction time. We next sought to further
understand the relationships between these changes in performance,
within and across features.

First, we tested whether a given feature exerted a similar influence
on both accuracy and RT.We found that this was indeed the case, as
there was a significant correlation between the effect distractors
had on accuracy and RT (rs < −0.87, ps < .001). The influences of
target discriminability on accuracy and RT were also significantly
correlated (rs < −0.54, ps < .001; Supplemental Table 3). Thus,
participants who became faster with higher levels of a given feature’s
strength also becamemore accurate, suggesting that accuracy andRT
shared a common underlying process (e.g., evidence accumulation
rate, which we return to below).

Second, we tested whether the influences of target discriminabil-
ity and distractor congruence on performance were independent
(e.g., distractors and targets are processed in parallel; Lindsay &
Jacoby, 1994; Servant et al., 2014) or instead modulatory (e.g.,
distractor congruence influences target sensitivity). If the two forms
of feature processing modulated one another, we would predict that
target and distractor coherence would interact in predicting
performance. We did not find such an interaction in RTs (ds =
0.05–0.23, p = .33; Table 1), though we did find a small but
significant interaction between target and distractor coherence on
accuracy (ds = −0.18 to −0.34, p = .023). For both studies,
removing target–distractor interactions as predictors in our accuracy
regressions improved model fit (protected exceedance probability
on Akaike information criteria: Experiment 2 protected exceedance
probability = 1; Experiment 3 protected exceedance probability =
1). If distractors had an antagonistic influence on target processing,
we would also predict that target and distractor sensitivity would be
negatively correlated across subjects. Contrary to this prediction,
these effects were either not significantly correlated or positively
correlated, both for RT, Experiment 2: r(25) = .14, p = .48;
Experiment 3: r(45) = .44, p = .0019, and accuracy, Experiment 2:
r(25)=−.15, p= .45; Experiment 3: r(45)= .12, p= .43, suggesting
that individual differences in target and distractor processing were
not antagonistic.

Previous Conflict Preferentially Suppresses
Distractor Sensitivity

Within a given trial, we found that performance varies
parametrically and independently with the coherence of target (color)
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and distractor (motion) features. We next sought to understand how
participants adapted their information processing across trials, to
provide insight into the control processes that guide performance in
this task. We measured how participants’ feature sensitivity changed
after difficult (e.g., more incongruent) trials, an index of cognitive
control known as conflict adaptation (Egner, 2007; Gratton et al.,
1992). The classic effect is that participants show weaker congruence
effects after incongruent trials than after congruent trials, with the
traditional interpretation being that this reflects upregulated target
sensitivity (Botvinick et al., 2001; Egner, 2007). Our task allowed us
to build on this work to test whether this adaptation effect varies
parametrically with distractor congruence. Critically, we can also test
whether adaptation occurs through an influence of previous conflict

on subsequent target enhancement, distractor suppression, or both.
Finally, we can further test whether adaptation occurs due to the
discriminability of the target in the previous trial.

Across all three of our studies, we found that participants’
sensitivity to the distractor dimension was robustly and parametri-
cally influenced by the distractor congruence in the previous
trial, as reflected both in their choice (ds = 1.44–1.74, p < .001;
Figure 3A) and RT (ds = 0.83–1.79, p < .001; Figure 3B; Table 2).
When the previous trial had congruent distractors, participants had
a strong sensitivity to the congruence of distactors on the current
trial (Figure 3A–B, navy). When the previous trial had incongruent
distractors, participants were much less sensitive to distractors
(Figure 3A–B, red). These patterns are consistent with those
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Figure 2
Target and Distractor Sensitivity

Attend
Color

Attend
Color

Attend
Motion

Attend
Motion

(A)

(C)

(B)

(G)

(E) (F)

(D) (H)

Note. (A) Participants were more accurate (blue, left axis) and responded faster (red, right axis) when the target color had higher
coherence. Circles depict participant behavior, and lines depict aggregated regression predictions. In all graphs, behavior and
regression predictions are averaged over participants and experiments. Target sensitivity aggregated across Experiments 2 and 3. (B)
Regression estimates for the effect of target coherence on performance within each experiment, plotted for accuracy (blue, left axis)
and RT (red, right axis). (C) Participants were more accurate and responded faster when the distracting motion had higher congruence
(coherence signed relative to target response). In all graphs, behavior and regression predictions are averaged over participants and
experiments. Distractor sensitivity aggregated across Experiments 1–3. (D) Regression estimates for the effect of distractor
congruence on performance within each experiment, plotted for accuracy and RT. (E and F) Similar to A and B, performance (E) and
regression estimates (F) for the effect of target coherence during attend-motion blocks, in which motion was the target dimension.
(G and H) Similar to A and B, performance (G) and regression estimates (H) for the effect of distractor congruence during attend-
motion blocks, in which color was the distractor dimension.The y-axis range is matched within-feature across tasks, see Supplemental
Figure 10 for matched y-axes across all features and tasks. Error bars on behavior reflect within-participant SEM, and error bars on
regression coefficients reflect 95%CI. Psychometric functions are jittered on the x-axis for ease of visualization. CI= confidence interval;
Exp = experiment; RT = reaction time; SEM = standard error of the mean. See the online article for the color version of this figure.
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typically observed in studies of conflict adaptation (Danielmeier
et al., 2011; Egner, 2007) and further demonstrate gradations
within these classic effects.
When varying both target and distractor features (Experiments 2–3),

we found an additional influence of previous distractor congruence

on target processing, whereby more incongruent previous trials
enhanced the influence of target discriminability on the current trial
(Figure 3D–E). However, the influence of previous distraction on
target processing was substantially smaller than its effect on distractor
processing (see Figure 5) and was only found for accuracy (p < .001)
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Figure 3
Distractor-Dependent Adaptation
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Note. (A and B) The relationship between distractor congruence and accuracy (A) and RT (B) was weaker when the previous
trial was more incongruent (redder colors). Circles depict participant behavior, and lines depict aggregated regression predictions.
The traditional binary adaptation effects are highlighted with their short forms, e.g., ‘iC’means the previous trial was incongruent
(i) and the current trial is congruent (C). (C) Regression estimates for the current distractor congruence by previous distractor
congruence interaction, within each experiment. (D and E) The relationship between target coherence and performance was
stronger after more incongruent trials in accuracy (D), but not RT (E). (F) Regression estimates for the current target coherence by
previous distractor congruence interaction, within each experiment. Error bars on behavior reflect within-participant SEM, and
error bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease of visualization.
Feature coherence was rank ordered and binned into quantiles with equal numbers of trials at each level of target coherence,
distractor congruence, or previous distractor congruence. RT= reaction time; SEM= standard error of the mean; CI = confidence
interval; ns = nonsignificant; Exp = experiment. See the online article for the color version of this figure.

Table 1
Target and Distractor Sensitivity

DV Predictors
Exp 1 (df = 45)
Effect size (d)

Exp 2 (df = 25)
Effect size (d)

Exp 3 (df = 45)
Effect size (d)

Aggregate
p value

Choice Target coherence 3.27 3.73 1.01 × 10−44

Distractor congruence 1.47 1.42 1.50 4.89 × 10−32

Target × Distractor −0.184 −0.344 .0226
RT Target coherence −1.90 −1.99 1.59 × 10−28

Distractor congruence −1.25 −1.49 −1.43 1.26 × 10−29

Target × Distractor 0.230 0.0525 .437

Note. Effect sizes are calculated from MAP group-level regression estimates. The p values are aggregated across experiments, with
statistically significant p values (two-tailed, α = 0.05) shown in bold. DV = dependent variable; RT = reaction time; MAP = maximum
a posteriori; Exp = experiment.
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and not RT (p = .57). Finally, we found that performance adapted to
the strength of the previous target, with less-discriminable targets
yielding lower sensitivity to target strength (i.e., poorer performance)
on the following trial, potentially due to disengagement (Supple-
mental Figure 2, Table 2). However, like the distractor–target effect,
this target–target effect was much smaller than the distractor–
distractor effects and only observable in accuracy (p< .001) and not
RT (p = .19).
A common concern when measuring conflict adaptation effects

is the extent to which these reflect control adjustment (as typically
assumed) or low-level priming that can occur due to stimulus–
stimulus or stimulus–response associations (Braem et al., 2019;
Hommel et al., 2004; Mayr et al., 2003; Schmidt & De Houwer,
2011). For example, in some tasks, if two adjacent trials are both
congruent or both incongruent, they are also more likely to share
stimulus–response mappings, biasing analyses of sequential adapta-
tion (Schmidt, 2019). Our experiment was designed to largely avoid
potential priming confounds by eliminating stimulus repetitions (with
two colors assigned to each response hand that never repeat) and by
using stochastic motion stimuli (vs., e.g., static arrows) that also have
very infrequent exact repetitions. For example, the probability that
two trials will have the same motion coherence was only 9%.
However, to further rule out that our key adaptation findings

resulted from priming effects, we tested whether adaptation effects
were present in our more automatic attend-motion blocks. Whereas
a priming account would predict similar (within-feature) adaptation
effects across both attend-color and attend-motion blocks (Moeller
& Frings, 2014), a cognitive control account would predict weaker
adaptation effects for attend-motion than attend-color blocks. We
found that adaptation effects during attend-motion blocks were
overall weak and inconsistently signed (e.g., previous interference
led to either increased or decreased sensitivity to distractors across
studies; Supplemental Tables 4 and 5). Comparing the adaptation
effects across the two types of blocks directly, we found significantly
stronger adaptation effects during attend-color than attend-motion
blocks. Distractor adaptation was weaker during attend-motion than
attend-color, despite including color repetitions during attend-motion
blocks (choice: p < .001; RT: p < .001). Critically, we can directly
compare trial-to-trial changes in motion sensitivity when motion is

task relevant (attend-motion) and task irrelevant (attend-color),
matching the salience of this motion dimension across tasks (Giesen
et al., 2012). Target adaptation during attend-motion was not
significant (choice: p = .268; RT: p = .777; Supplemental Table 4)
and was weaker than distractor adaptation during attend-color
(choice: p < .001; RT: p = .34; Supplemental Table 5). Together,
these results suggest that the adaptation effects we observed during
attend-color trials likely reflected changes in control states rather than
stimulus-driven priming.

In addition to influencing the sensitivity of choices and RTs to
individual features (adaptation effects described above), we found
that previous target and distractor information also exerted a
small but reliable influence on the likelihood that the participant
would respond randomly on the next trial (lapse rate, see the
Regression Analysis section). Specifically, higher levels of
distractor incongruence and lower levels of target discriminability
increased subsequent lapse rates (ps < .001; Table 2), though these
changes were subtle (e.g., postcongruent lapse rates ranged from
0.023% to 0.13% across studies; postincongruent lapse rates
ranged from 0.13% to 0.41% across studies). We did not otherwise
find consistent main effects of previous targets and distractors
on choice behavior (i.e., in the direction of a particular response)
or on RT.

Performance Incentives Preferentially Enhance
Target Sensitivity

We found that performance on our task adapted to previous
distractor-related interference and that this influence was observed
primarily in subsequent processing of the (motion) distractor rather
than the (color) target. This may reflect a fundamental bias in the
control system toward adjusting distractor processing in our task, but it
may also reflect a process that is specialized for conflict adaptation. To
disentangle these possibilities, we examined how target and distractor
processing are influenced by heightened levels of motivation. In
Experiment 3, we incorporated an incentive manipulation, with blocks
of trials for which participants could either earn a monetary reward for
fast and accurate performance, and blocks where performance was not
rewarded (Figure 1D).
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Table 2
Effects of Previous Conflict on Feature Sensitivity

DV Predictors
Exp 1 (df = 41)
Effect size (d)

Exp 2 (df = 15)
Effect size (d)

Exp 3 (df = 35)
Effect size (d)

Aggregate
p value

Choice Distractor × Previous Distractor 1.59 1.45 1.74 6.15 × 10−31

Distractor × Previous Target −0.670 0.103 .964
Target × Previous Distractor −0.473 −0.990 2.83 × 10−8

Target × Previous Target 0.418 0.644 1.25 × 10−5

Lapse rate Previous distractor −0.522 −0.498 −1.04 1.75 × 10−10

Previous target −0.110 −0.494 .00934
RT Distractor × Previous Distractor −0.836 −1.44 −1.79 8.99 × 10−24

Distractor × Previous Target 0.174 0.0618 .520
Target × Previous Distractor 0.210 0.0155 .726
Target × Previous Target 0.147 0.154 .285
Previous distractor 0.287 0.202 −0.267 .623
Previous target 0.109 −0.275 .0884

Note. Effect sizes are calculated from MAP group-level regression estimates. The p values are aggregated across experiments, with
statistically significant p values (two-tailed, α = 0.05) shown in bold. DV = dependent variable; RT = reaction time; MAP = maximum
a posteriori; Exp = experiment.
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We found that participants’ accuracy was more sensitive to target
discriminability in rewarded blocks than in nonrewarded blocks (d =
0.61, p< .001; Figure 4A, Table 3). This effect of incentives on target
sensitivity was specific to choice and not RTs (d = −0.10, p = .47),
though participants were overall faster in rewarded blocks (d=−0.41,

p = .0045). Participants were also marginally more likely to make
lapses responses during rewarded blocks (d = 0.244, p = .092). In
terms of distractors, we found that in rewarded blocks, participants
were less sensitive to distractors in RT (d= 0.35, p= .012), albeit with
a small effect size, and that incentives did not significantly influence
distractor sensitivity in choice (d = −0.016, p = .91).

We further found that the target-enhancing effects of incentives
also were not specific to the color dimension. When motion was the
target dimension (attend-motion blocks), incentives preferentially
increased sensitivity to motion coherence (d = 0.70, p < .001).
Interestingly, incentives had an even larger influence on target
sensitivity in attend-motion relative to attend-color blocks, t(59.0)=
2.14, p = .036; Supplemental Tables 6 and 7.

Previous Conflict and Incentives Have Dissociable
Influences on Target and Distractor Processing

Our within-trial results demonstrated that participants are
sensitive to target (color) and distractor (motion) information,
with little interaction between these dimensions. Consistent with
this putative independence, we found that previous interference
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Figure 4
Influence of Incentives on Target and Distractor Sensitivity

(A) (B) (C)

(D) (E) (F)

Note. (A and B) The relationship between target coherence and performance was stronger during incentivized blocks (gold) in the
domain of accuracy (A), but not RT (B). Circles depict participant behavior, and lines depict aggregated regression predictions. (C)
Regression estimates for the target coherence by incentive interaction. (D and E) The relationship between distractor congruence
and performance was weaker during incentivized blocks (gold) in the domain of RT (E), but not accuracy (D). (F) Regression
estimates for the distractor congruence by incentive interaction. Error bars on behavior reflect within-participant SEM, and error
bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease of visualization. RT =
reaction time; SEM = standard error of the mean; CI = confidence interval; Exp = experiment. See the online article for the color
version of this figure.

Table 3
Effects of Incentives on Feature Sensitivity

DV Predictors
Exp 3 (df = 41)
Effect size (d) p value

Choice Target × Reward 0.612 8.56 × 10−5

Distractor × Reward −0.0156 .911
Lapse rate Reward 0.244 .0924
RT Target × Reward −0.103 .467

Distractor × Reward 0.349 .0195
Reward −0.411 .00447

Note. Effect sizes are calculated from MAP group-level regression
estimates. Statistically significant p values (two-tailed, α = 0.05) are
shown in bold. DV = dependent variable; RT = reaction time; MAP =
maximum a posteriori; Exp = experiment.
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primarily influenced distractor sensitivity (suppressing distractor
sensitivity after trials with incongruent distractors) and that
rewards primarily influenced target sensitivity (enhancing target
sensitivity when incentivized). These findings strongly suggest a
dissociation between target and distractor processing.
To confirm these findings, we formally tested the double dissociation

between how incentives and previous interference influenced target and
distractor choice sensitivity (Figure 5). We found that previous conflict
had a larger absolute effect on distractor processing than it did on target
processing in both accuracy, t(31.4) = 9.54, p = 8.36 × 10−11, and RT,
t(33.7)= 4.64, p= 5.14 × 10−5. We found that rewards conversely had
a larger influence on targets than distractors in accuracy, t(44.5)= 5.08,
p = 7.22 × 10−6, though not in RT, t(37.7) = 0.25, p = .80. Critically,
the difference-of-differences was also significant in both accuracy,
t(39.6) = 10.2, p = 1.36 × 10−12, and RT, t(48.3) = 3.11, p = .0031,
supporting dissociable control over different dimensions of feature
processing.
These findings are consistent with a previous neuroimaging

experiment that found incentives enhanced responses in target-
related areas (visual word form area for text targets) and mostly
incongruent blocks suppressed responses in distractor-related areas
(fusiform face area for face distractors; Soutschek et al., 2015). In
the following sections, we extend these convergent findings to
explore how previous conflict and incentives influence the dynamics
of control implementation.

Differential Within-Trial Dynamics of Target and
Distractor Processing

Our initial results show that participants independently control
their sensitivity to target (color) and distractor (motion) information.
However, previous research has revealed that participants’ task
processing also dynamically changes within a trial (Servant et al.,

2014; Weichart et al., 2020; White et al., 2011), including in
response to incentives (Adkins & Lee, 2021). Whereas much of the
previous research has focused on dynamics in spatial attention
during flanker tasks (e.g., a shrinking spotlight of attention;
Weichart et al., 2020; White et al., 2011), less is known about the
dynamics of attention between features of conjunctive stimuli like
those in our task, where target and distractor processing may be
more independent (Adkins & Lee, 2021; Servant et al., 2014).

To test how sensitivity to target and distractor features changed
within each trial, we measured whether the influence of coherence on
participants’ choices depended on reaction time (i.e., the Choice ∼
Coherence × RT interaction). These analyses work under the logic
that faster RTs reflect earlier epochs of information processing,
which we confirm through subsequent evidence accumulation
simulations (see An AccumulatorModel of Attentional Control Over
Target and Distractor Processing section; Supplemental Figures 4
and 5). Our approach builds on “delta function” analyses of how
congruence effects differ across RT quantiles (De Jong et al., 1994;
Ridderinkhof, 2002; van den Wildenberg et al., 2010),3 extending
this methodology with a general linear modelling approach that
estimates parametric changes in both target and distractor sensitivity
over time.

At the earliest RTs, participants were the least sensitive to targets
(Figure 6A) and the most sensitive to distractors (Figure 6D). At
later RTs, participants became more sensitive to targets (ds = 0.69–
0.97, p < .001) and less sensitive to distractors (ds = −0.71 to −1.5,
p < .001; Table 4). This is consistent with an attentional control
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Figure 5
Dissociations Between Previous Conflict and Incentive Effects

(A) (B)

Note. Postconflict effects were significantly larger on distractor sensitivity than target sensitivity in
accuracy (A) and RT (B). In contrast, reward effects were significantly larger on target sensitivity than
distractor sensitivity in accuracy (A) and similarly large in RT (B). Errors bars showMAP SEM. RT =
reaction time; SEM = standard error of the mean; MAP = maximum a posteriori; Exp = experiment.
See the online article for the color version of this figure.

3 Previous work on delta-plot analyses has investigated howRT difference
scores (e.g., congruent − incongruent) vary across RT quantiles. This work
has been criticized based on the inherent mean–variance relationship in
skewed RT distributions (Zhang & Kornblum, 1997). Instead, our analyses
investigate how accuracy effects vary as a function of RT instead, avoiding
this concern.
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process that enhances sensitivity to goal-relevant features and
suppresses attention toward goal-irrelevant features. Notably, these
results suggest that this attentional process occurs “online” within
the course of a trial.

We also fit a complementary analysis for RT (i.e., the RT ∼
Coherence × Accuracy interaction). We found that participants had
steeper target coherence slopes on error trials (ds = 0.89–1.5, p <
.001; Figure 6B), driven by faster errors when the targets were high
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Figure 6
Target and Distractor Sensitivity Dynamics

(A)

(D)

(B)

(E)

(C)

(F)

(G) (H)

Note. (A) The relationship between target coherence and accuracy increased at later RTs (pinker color). (B) Participants
responded faster on error trials than on correct trials when target coherence was higher. (C) Regression estimates for the
interaction between target coherence and RT (blue) and accuracy (red), within each experiment. (D) The relationship between
distractor congruence and accuracy decreased at later RTs (pinker). Note that these data are mean-centered within each RT bin to
remove the target effects in (A) from this visualization of distractor sensitivity. (E) Participants responded faster on error trials
than on correct trials when distractors were incongruent. (F) Regression estimates for the interaction between distractor
congruence and RT (blue) and accuracy (red), within each experiment. (G) Target (green) and distractor (cyan) sensitivity are
plotted as a function of reaction time, as estimated by our regressionmodel in attend-color blocks. Vertical lines indicate quartiles
of the RT distribution. (H) Same as G but generated from regression models fit to the attend-motion blocks. Note the different
scaling of the x-axis and y-axis (see dashed line between plots). Error bars on behavior reflect within-participant SEM, error bars
on sensitivity estimates reflect between-participant SEM of the predictions, and error bars on regression coefficients reflect 95%
CI. Psychometric functions are jittered on the x-axis for ease of visualization. Feature coherence and RT were rank ordered and
binned into quantiles with equal numbers of trials at each level of target coherence, distractor congruence, or RT bin. RT =
reaction time; SEM= standard error of the mean; CI= confidence interval; Exp= experiment. See the online article for the color
version of this figure.
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coherence, consistent with participants responding before their
maximal target sensitivity. Likewise, we found that the relationship
between RT and distractor congruence inverted on error trials (ds =
−0.68 to −1.8, p < .001; Figure 6E), with participants making faster
errors on more incongruent trials, consistent with an early sensitivity
to distractors that is suppressed over time.
These findings suggest online dynamics in the allocation of top-

down attention to facilitate target processing and suppress distractor
processing, but it is possible that they instead reflect dynamics
inherent to the bottom-up processing of color andmotion information.
To rule out this alternative hypothesis, we tested whether similar
sensitivity dynamics were present during attend-motion blocks, when
color information serves as a much less potent distractor. During these
blocks, we found that participants enhanced target (motion) sensitivity
faster than they did during attend-color blocks (p < .001; Figure 6H;
Supplemental Tables 8 and 9). In contrast, participants had slower
distractor sensitivity dynamics during attend-motion blocks (p <
.001). Together these results demonstrate that these sensitivity
dynamics depend on the task that participants are performing, rather
than being exclusively due to stimulus-driven factors.
Finally, we tested whether participants’ within-trial attentional

dynamics changed over the course of the experiment, modeling the
linear change in parameters across blocks of trials. We found that
later in the experiment, participants’ overall sensitivity to distractors
was higher (in choice), and their sensitivity to targets was lower
(in reaction time; see Supplemental Table 11). However, later in
the experiment, participants also had faster target and distractor
dynamics, such that maladaptive sensitivity was most prominent
in the earliest phase of the trial (Supplemental Figure 11). These
results speculatively suggest that over time participants shift from
maintaining initial sensitivity to reactively reconfiguring attention,
potentially due to fatigue or proactive interference from attend-
motion blocks.

Previous Conflict and Incentives Influence
Early Trial Dynamics

We found that, within a trial, participants dynamically adjusted
attention depending on the task at hand, with increasing sensitivity
to task-relevant color information and decreasing sensitivity to task-
irrelevant motion information over the course of a trial. This raises
the question whether the two forms of adaptation we observed,
related to previous conflict and incentives, influenced different
components of the within-trial attentional dynamics.

To address this question, we first examined how the dynamics of
target and distractor sensitivity were altered by the congruence of the
distractor in the previous trial (i.e., Choice ∼ PreviousDistractor ×
RT × Coherence). We found that after incongruent trials, participants
started the next trial more sensitive to targets and less sensitive to
distractors (Figure 7A). Although this means that after congruent trials
participants had worse initial conditions (starting less sensitive to
targets andmore sensitive to distractors), they appeared to compensate
for this early disadvantage with faster increases in target enhancement
(ds = 0.65–1.0, p < .001) and distractor suppression (ds = −0.68 to
−1.1, p < .001; Table 5). Both postcongruent and postincongruent
trials thus reached similar asymptotic levels of feature sensitivity. This
early influence of previous conflict on congruence sensitivity is
consistent with previous experiments on the time course of conflict
adaptation (Stins et al., 2008;Wylie et al., 2010), with the current work
extending these findings to show concurrent, albeit weaker, target-
enhancement dynamics.

We performed the equivalent analysis for incentive-related
adaptation (i.e., Choice ∼ Reward × RT × Coherence), and found
that during incentivized blocks, participants’ initial target sensitivity
was higher than during nonincentivized blocks and remained so
across much of the trial (see Figure 7D). However, target sensitivity
eventually reached an asymptote, such that toward the end of the
trial, both incentivized and nonincentivized trials had similar levels
of target sensitivity (see slowest quantile in Figure 7D). This
convergence was accounted for by larger increases in lapse rates later
in incentivized trials (d = 0.52, p < .001; Table 6). The dynamics of
distractor sensitivity, by contrast, did not significantly differ between
incentivized and nonincentivized trials (d = 0.055, p = .71).

An Accumulator Model of Attentional Control Over
Target and Distractor Processing

Our results demonstrate that participants independently control the
initialization and online adjustment of attention toward target and
distractor features. To parsimoniously account for this set of findings,
we developed an accumulator model that integrated elements of
previous models used to separately account for performance in tasks
involving perceptual discrimination (Gold & Shadlen, 2007; Ratcliff
&McKoon, 2008) and overriding prepotent distractors (Cohen et al.,
1990; Weichart et al., 2020; White et al., 2011). We used a variant of
a feedforward inhibition model, in which inputs provide excitatory
inputs to associated response units and inhibitory inputs to alternative
response units (Shadlen & Newsome, 2001). Our decision model
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Table 4
Dynamics of Feature Sensitivity Across Response Times

DV Predictors
Exp 1 (df = 38)
Effect size (d)

Exp 2 (df = 21)
Effect size (d)

Exp 3 (df = 41)
Effect size (d)

Aggregate
p value

Choice Target × RT 0.686 0.975 4.61 × 10−11

Distractor × RT −0.709 −1.54 −1.19 8.40 × 10−20

Lapse rate RT 0.247 0.928 0.534 9.25 × 10−13

RT Target × Accuracy 1.46 0.889 1.99 × 10−14

Distractor × Accuracy −0.683 −1.82 −1.09 1.39 × 10−20

Note. Effect sizes are calculated from MAP group-level regression estimates. The p values are aggregated across experiments,
with statistically significant p values (two-tailed, α = 0.05) shown in bold. DV = dependent variable; RT = reaction time;
MAP = maximum a posteriori; Exp = experiment.

14 RITZ AND SHENHAV

https://doi.org/10.1037/rev0000442.supp
https://doi.org/10.1037/rev0000442.supp
https://doi.org/10.1037/rev0000442.supp


takes as inputs the color and motion coherence in support of different
responses, nonlinearly transforms these inputs, and then integrates
evidence for each response in separate rectified accumulators with
balanced feedforward excitation and inhibition (Figure 8). The
signal-to-noise ratio of the intermediate layer’s outputs is determined
by control units that determine the gain of a given feature (Cohen
et al., 1990; Musslick et al., 2019). We hand tuned the parameters of
this model to determine whether it could capture our core experimental
findings across choice and reaction time.
Our accumulator model was able to reproduce our key within-trial

findings. During our main attend-color trials, it generated responses

that were faster and more accurate with increasing color coherence
(Figure 9A) and slower and less accurate with increasing motion
incongruence (Figure 9B). We simulated attend-motion trials by
increasing the target gain and decreasing the distractor gain, to
capture potential differences in both automaticity and control. Now,
our model generated responses that were even faster and more
accurate with increasing target coherence (now motion; Figure 9C)
but that were insensitive to distractor congruence (now color; Figure
9D), replicating the main behavioral results in attend-motion blocks.
Notably, distractor effects were not reproduced in an accumulator
competition model parameterized to be more “race-like”
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Figure 7
Influence of Conflict and Incentives on Sensitivity Dynamics
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Note. (A) The relationship between previous distractor congruence and current distractor congruence was strongest for early
RTs (bluer color). The y-axis depicts the difference in accuracy between the extreme tertiles of previous congruence, for
visualization purposes. (B) Target (green) and distractor (cyan) sensitivity are plotted as a function of previous congruence
(color shade) and reaction time (x-axis), as estimated by our regression model. Vertical lines indicate quartiles of the RT
distribution. (C) Regression estimates for the interactions between reaction time and previous congruence on lapse rate
(“saturation dynamics,” orange); or reaction time, previous congruence, and feature coherence on accuracy (target is green,
distractor is cyan). (D) The relationship between incentives and target coherence was strongest for early RTs (bluer color). The
y-axis depicts the difference in accuracy between blocks where there were rewards versus blocks without rewards. (E) Target
(green) and distractor (cyan) sensitivity plotted as a function of incentives (gold) and reaction time (x-axis), as estimated by our
regression model. Vertical lines indicate quartiles of the RT distribution. (F) Regression estimates for the interactions between
reaction time and incentives on lapse rate (orange); or reaction time, incentives, and feature coherence on accuracy (target is
green, distractor is cyan). Error bars on behavior reflect within-participant SEM, error bars on sensitivity estimates reflect
between-participant SEM on the predictions, and error bars on regression coefficients reflect 95% CI. Psychometric functions
are jittered on the x-axis for ease of visualization. Feature coherence and RT were rank ordered and binned into quantiles with
equal numbers of trials at each level of target coherence, distractor congruence, or RT bin. RT = reaction time; SEM= standard
error of the mean; CI = confidence interval; Exp = experiment. See the online article for the color version of this figure.
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(Supplemental Figure 3; Teodorescu & Usher, 2013). This occurred
because larger inputs (whether congruent or incongruent) drove
faster reaction times.
We next used this model to test potential mechanisms underlying

participants’ within- and between-trial control adaptations. First, we
tested whether participants’ apparent within-trial dynamics in feature
sensitivity plausibly resulted from actual within-trial changes in
control gains governing feature sensitivity or whether such dynamics
could result from static control gains. We implemented time-varying
feature gains as attractors with an initial gain (e.g., reflecting bottom-
up salience or learning) that exponentially approaches a fixed point
(e.g., determined by the task goals and control; cf. Musslick et al.,
2019; Steyvers et al., 2019).
We found that incorporating these time-varying gains into our

accumulator model allowed it to reproduce participants’ behavioral
dynamics. In accuracy, our model replicated the shift in target
sensitivity over time, with the collapsing bound reducing performance
on the slowest trials (Figure 10A). Our model similarly captured
participants’ decreased target sensitivity at later RTs (Figure 10B).
Finally, our model recreated the analogous effects in RT, with faster
errors for high-coherence targets and incongruent distractors (Figure
10C and 10D). Critically, we were unable to replicate these qualitative
patterns of behavior with FFI models in which control gains were
frozen throughout the trial (Supplemental Figure 4). Drift-diffusion
models with across-trial variability in gain, noise, or threshold,
and drift-diffusion models with within-trial dynamics in noise or
threshold, were also unable to capture our key effects without within-
trial gain dynamics (Supplemental Figure 5).

At later RTs, participants were more likely to exhibit lapses in
performance (i.e., choose randomly; ds= 0.25–0.93, p< .001, see
Table 4), which were estimated with a separate term in our
regression models (see the Regression Analyses section in
Methods). This is evident in poorer overall performance in the
slowest RT bin, relative to the second and fourth bins (see Figure
10A, left panel, pink line). A similar “hook” is often observed
in RT-conditioned accuracy functions, with gradually better
performance followed by poorer performance for the slowest RTs
(van den Wildenberg et al., 2010; Weichart et al., 2020). Our
simulation captured this global reduction in accuracy by
including a collapsing boundary (Drugowitsch et al., 2012;
Rosenbaum et al., 2022), which leads to late errors irrespective of
feature coherence (see Supplemental Figure 5 for contrast to fixed
bound). Notably, even though overall accuracy is reduced over
time, target sensitivity is stronger at the slowest RT bin relative to
the earliest RT bin (compare navy and pink psychometric slopes
in Figure 10A), consistent with both feature-selective dynamics
(gain control) and global dynamics (collapsing bound). By
including a theory-driven mechanism for reductions in overall
accuracy, our FFIc model captures performance trends in this
slowest RT quantile that were difficult to capture with for more
model-agnostic regression analyses.

The parallel feature pathways in this model are designed to capture
the independent influences of target and distractor information
(Lindsay & Jacoby, 1994). However, the time-varying feature gains
provide an account for the weak interactions we observed between
target and distractor sensitivity in accuracy. Despite there being no
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Table 5
Effects of Previous Conflict on Feature Sensitivity Dynamics

DV Predictors
Exp 1 (df = 26)
Effect size (d)

Exp 2 (df = 9)
Effect size (d)

Exp 3 (df = 29)
Effect size (d)

Aggregate
p value

Choice Previous Distractor × Distractor × RT −0.853 −1.07 −1.01 1.62 × 10−14

Previous Distractor × Target × RT 1.01 0.646 1.71 × 10−7

Lapse rate Previous Distractor × RT 0.456 0.463 0.531 3.52 × 10−6

RT Previous Distractor × Distractor × Accuracy −0.563 −1.15 −1.16 2.84 × 10−13

Previous Distractor × Target × Accuracy −0.00500 −0.524 .135
Previous Distractor × Accuracy 0.417 0.175 −0.162 .881

Note. Effect sizes are calculated from MAP group-level regression estimates. The p values are aggregated across experiments, with
statistically significant p values (two-tailed, α = 0.05) shown in bold. DV = dependent variable; RT = reaction time; MAP = maximum a
posteriori; Exp = experiment.

Table 6
Effects of Incentives on Feature Sensitivity Dynamics

DV Predictors
Exp 3 (df = 29)
Effect size (d) p value

Choice Reward × Target × RT −0.139 .331
Reward × Distractor × RT 0.0546 .712

Lapse rate Reward × RT 0.524 .000937
RT Reward × Target × Accuracy 0.437 .00432

Reward × Distractor × Accuracy −0.170 .260
Reward × Accuracy −0.540 .000646

Note. Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p values
(two-tailed, α = 0.05) are shown in bold. DV = dependent variable; RT = reaction time; MAP = maximum a
posteriori; Exp = experiment.
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competition in feature processing in our model, we found these weak
target–distractor interactions emerge in simulated accuracies, but not
simulated RTs. This interaction appeared to result from the different
time courses of target and distractor sensitivity. As in participants’
behavior, the model’s errors due to incongruent distractors tend to
occur early (Figure 10C and 10D), censoring target processing at a
lower (early) level of sensitivity. This interplay between feature
sensitivity dynamics (but not overall feature sensitivity per se) offers
a plausible explanation for the subtle and seeming inconsistent
interactions in participants’ behavior.
Having provided an account of how each of our stimulus features

is processed over the course of the trial depending on the task goal,
we next tested a potential model-based account of the two forms of
control adaptation we observed across trials. Our participants
demonstrated enhanced target sensitivity on rewarded blocks and
suppressed distractor sensitivity after increasingly incongruent
trials. In both cases, adaptation appeared to enhance sensitivity to
stimulus features at the fastest reaction times.
To account for the early effects of conflict and incentives, we

modified the initial conditions of our model’s gain dynamics
(Figure 11A). We simulated postinterference adaptation by
initializing the distractor gain closer to its asymptote, and we
simulated reward incentivization by initializing the target gain closer

to its asymptote. We found that these simulations qualitatively
reproduced participants’ behavior, with stronger adaptation and
reward effects earlier in the trial than later. The exponential dynamics
in our attractor network parsimoniously account for the fact that
dynamics tended to be faster when they were initialized further from
the fixed point (i.e., postcongruent trials). Thus, our model was able
to capture the range of findings in this experiment: target–distractor
sensitivity, within-trial dynamics, and how the dynamics of target
and distractor processing may be influenced by control.

Discussion

When faced with distraction, we can sustain good performance
by engaging with relevant information or ignoring disruptive
information. Our experiment revealed that these strategies are
under independent cognitive control and are driven by distinct
attentional dynamics. Using a bivalent random-dot motion task
with parametric target and distractor coherence (PACT), we
found that target and distractor information have independent
influences on participants’ performance. Furthermore, we found
that participants’ sensitivity to targets and distractors was
preferentially modulated by incentives and previous interference,
respectively. These adaptations altered the initial conditions of
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Figure 8
Feedforward Inhibition With Control

(A)

(B)

(C)

Note. Color evidence (green) and motion evidence (blue) are transformed and accumulated to make a choice. Balanced
excitatory connections (black solid lines) and inhibitory connections (red dashed lines) cause the accumulation of the difference
in evidence for each response. (A) Evidence for the left response (purple) and right response (orange) are accumulated over time
without a leak. When one of the accumulators crosses a (linearly collapsing) decision threshold, the model chooses that response.
(B) Within each trial, the signal to noise of each feature pathway is controlled by a feature gain. Over time within a trial, the
feature gains for targets (green) and distractors (cyan) exponentially approach to a fixed level (high gain for targets, zero gain for
distractors). Note the difference in x-axis scaling compared to Figure 6G. (C) An equivalent visualization of the dynamics in B.
Attractor dynamics drive target and distractor gains to their fixed level, shown at different time points within the trial (pinker
colors are later in the trial). The horizontal line depicts zero distractor gain. FFIc = feedforward inhibition with control. See the
online article for the color version of this figure.
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feature-selective gains, which was followed by dynamic enhance-
ment to target gains and suppression of distractor gains. These
behavioral phenomena could be parsimoniously explained by a
hybrid sequential sampling model with goal-dependent attractor
dynamics over feature weights.
Together, these results support a cognitive control architecture

that is parametric, multivariate, and dynamic. Previous research has
found that cognitive effort is enhanced in response to incentives
(Parro et al., 2018; Yee & Braver, 2018) and previous conflict
(Egner, 2007; Gratton et al., 1992). The current experiments extend
these previous findings to show that these adaptations are both
graded in their intensity and selective in their allocation. These
findings are consistent with a multivariate perspective on cognitive
control (Ritz et al., 2022), in which people optimize a configuration
of control signals according to their costs and benefits (Musslick
et al., 2015; Shenhav et al., 2013). The target and distractor
configurations observed here add to a body of work teasing apart the
conditions under which people coordinate across multiple control
signals (Danielmeier et al., 2011; Leng et al., 2021; Noonan et al.,
2016; Simen et al., 2009; Soutschek et al., 2015; Wöstmann
et al., 2019).
A core question arising from these results is why there are

preferential relationships between previous conflict with distractors
and incentives with targets. One possibility is that this is due to credit
assignment. A system that could properly assign credit to features
based on their contribution to conflict and incentives should allocate

control toward distractors and targets. Distractors are a salient source
of response conflict, and participants could adjust sensitivity to reduce
this conflict. When participants were performing the more automatic
attend-motion blocks, during which response conflict was absent, this
adaptation was also absent. In contrast, reward contingencies were
explicitly tied to target discrimination performance. During attend-
motion blocks, there was a stronger association between target
coherence and performance (e.g., due to response compatibility and
the fact that only targets contributed to accuracy), potentially
explainingwhy these blocks had larger incentive effects. This account
is consistent with Bayesian models of cognitive control, such as those
that predict feature congruence (Jiang et al., 2014; Yu et al., 2009)
or the value of control policies (Bustamante et al., 2021; Lieder
et al., 2018).

Our results also provide insight into the dynamic implementation of
attentional control. Previous work has shown that within-trial
attentional dynamics play an important role in both decision making
(Callaway et al., 2021; Krajbich et al., 2010; Li & Ma, 2021;
Westbrook et al., 2020) and cognitive control (Adkins & Lee, 2021;
Hardwick et al., 2019; Servant et al., 2014; Ulrich et al., 2015;Weichart
et al., 2020; White et al., 2011). These foundational experiments have
largely focused on spatial attention, with far less known about the
dynamics of feature-based attention, where the processing of targets
and distractors is lessmutually constrained.Whereas previouswork has
modeled within-trial dynamics as simplified impulse functions (Ulrich
et al., 2015), our modeling approach extends these accounts with
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Figure 9
Simulation of Target and Distractor Sensitivity (See Figure 2)

(C)

(D)

(A)

(B)

Note. (A and B) Sensitivity to target coherence (A) and distractor congruence (B) in behavior (left) and in the FFIc simulation (right)
for attend-color blocks. (C and D) Same as A and B, but for attend-motion blocks. See the online article for the color version of this
figure.
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a more process-oriented focus on how a neural network could be
parameterized to produce key patterns of within-trial attentional
dynamics. Furthermore, relatively few experiments have studied how
attentional dynamics are modified in response to control drivers like
incentives or task demands (though see Adkins & Lee, 2021; van den
Wildenberg et al., 2010; Yu et al., 2009).
Our experiments show that the dynamics of target and distractor

sensitivity are independent and that previous conflict and incentives
appear to operate through changes to the initial conditions of these
feature gains.4 These findings are broadly consistent with influential
theories of attentional dynamics, which propose that early task
processing is largely driven by feature salience and statistical or
reinforcement learning, whereas attentional control has a relatively
slower time course (Awh et al., 2012; Theeuwes, 2010, 2018; see
also van den Wildenberg et al., 2010).5 If participants are learning
the relevance of different features, these initial conditions in part
may reflect the prior probability that attention toward targets or
distractors will support task goals (Lieder et al., 2018; Yu et al.,
2009). Similar to how response priors are reflected in the initial
decision state (Bogacz et al., 2006; Simen et al., 2009), priors on
feature priority may be reflected in the initial attentional state. In the
case of previous interference, this could reflect learning whether
distractors enhance performance (e.g., after trials on which congruent
distractors led to better performance) or a local estimate of the
probability a trial will be congruent (Yu et al., 2009). For incentives, this

may reflect the expected target-reward contingency. Future research
should investigate this account by measuring attentional dynamics as
participants learn task contingencies (Shenhav et al., 2018).

Our patterns of conflict- and incentive-dependent dynamics help
rule out stimulus-driven dynamics and support independent control
over feature processing. After congruent trials, participants started
the next trial with more similar target and distractor gains, which
were then more quickly separated within the trial (Figure 7B). If
these dynamics were an artifact of the decision process (e.g., due
to accumulator attractors; Wong & Wang, 2006), then we would
expect that when target and distractor gains are initially more
similar, there would be slower dynamics. Instead, we found faster
dynamics, supporting a role for feedback control that reconfigures
attentional gain to align with task goals. Additionally, during
incentivized blocks, we saw that participants modified attentional
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Figure 10
Simulation of Target and Distractor Sensitivity Dynamics (See Figure 6)

(A)

(C)

(B)

(D)

Note. (A and B) RT-dependent (A) and accuracy-dependent (B) sensitivity to target coherence in behavior (left) and in the FFIc
simulation (right). (C and D) Same as A and B, but for distractor congruence. FFIc = feedforward inhibition with control; RT =
reaction time. See the online article for the color version of this figure.

4 We found that just modifying feature gains’ initial conditions parsimoni-
ously accounted for incentive and previous conflict effects. Note that we do not
explicitly compare this model to more complex models incorporating changes
to parameters like decay rate and/or asymptotic gain, which should be more
thoroughly investigated in future experiments.

5 We assume that “early” and “late” processing do not reflect discrete
stages (Hübner et al., 2010) but different time points in a continual process.
While this is consistent with previous work showing that gradual attentional
adjustments are a better model of flanker task performance (White et al.,
2011), future work should experimentally confirm the continuous nature of
these attentional dynamics.

HUMANS RECONFIGURE TARGET AND DISTRACTOR PROCESSING 19



dynamics for targets, but not distractors. This finding further
supports the independence of these attentional dynamics, demon-
strating that participants can alter attention toward individual
features one at a time. This pattern of incentives enhancing
sensitivity to target information, while also producing faster
responses and a marginally higher lapse rate, is consistent with
previous work on motivated attention. A recent experiment used
drift-diffusion modeling to show that participants increase their rate
of evidence accumulation and decrease their response threshold
when faced with higher rewards, consistent with the reward rate-
optimal policy (Leng et al., 2021). The current experiment extends
these findings by revealing how specific attentional adjustments
improve evidence accumulation, providing a more process-oriented
account of motivated cognitive control.
Our dynamical process model may help link behavior in response

to conflict tasks to cognitive dynamics in other domains. In the
domain of task switching, recent cognitive models have developed
similar dynamical accounts of how people reconfigure task sets.
Classic work has shown that switch costs exponentially decay with
preparation time (Monsell & Mizon, 2006; Rogers & Monsell,
1995), similar to the dynamics in the current task. Computational
models have formalized these task set dynamics during the switch
preparation period (Gilbert & Shallice, 2002; Jongkees et al., 2023;
Musslick et al., 2019; Ueltzhöffer et al., 2015; Yeung & Monsell,
2003) and across trials (Grahek et al., 2022; Jaffe et al., 2023;

Steyvers et al., 2019). If the within-trial dynamics we observe here
reflect such “task set micro-adjustments” (Ridderinkhof, 2002), then
our results highlight the computational similarities between different
forms of cognitive flexibility. Both within trials and across tasks,
reconfiguration appears to be well captured by a common class of
dynamical systems in which task configurations exponentially
approach an appropriate set point. In this experiment, we show that
these dynamics are multivariate and adjusted to meet local task
demands through changes to initial conditions. Interestingly, control
over initial conditions also plays a central role in the neural
dynamics of motor preparation (Churchland et al., 2010; Kao et al.,
2020; Remington et al., 2018), highlighting the broader similarities
across motor and cognitive domains (Ritz et al., 2020, 2022) and
generating predictions for the neural implementation of dynamic
cognitive control.

The evidence we provide for dissociable control over target and
distractor processing is consistent with previous neuroscience
experiments that used neural correlates of stimulus processing to
argue for independent enhancement and suppression processes
(Gazzaley et al., 2005; Noonan et al., 2016; Soutschek et al.,
2015; Wöstmann et al., 2019). Our results extend these findings
by exploring how different factors can contribute to the dynamic
reconfiguration of target and distractor attention, which we formalize
in an explicit process model. Notably, our findings diverge from
neuroimaging experiments that have suggested that control primarily
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Figure 11
Simulation of Postconflict and Incentive Effects (See Figure 7)
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acts through enhancements to target processing (Egner & Hirsch,
2005). One potential source of this divergence may be that people’s
control strategies differ depending on the source of task conflict
(Braem et al., 2014; Egner, 2008; Egner, 2007). For example, tasks
evoking stimulus–stimulus conflict (e.g., semantic competition in the
Stroop task) may require different strategies than tasks evoking
stimulus–response conflict (e.g., distractors driving competing
responses, as in PACT). Although previous work using Stroop-
like tasks has found similar patterns of control adjustments as in the
current experiment (Soutschek et al., 2015), this raises the broader
question of whether the specific feature–control relationships in
this experiment should generalize to other tasks. According to the
expected value of control theory and the learned value of control
model that builds upon it, control strategies are adapted to specific
task contexts (Lieder et al., 2018; Ritz et al., 2022; Shenhav et al.,
2013). This framework predicts that there will be strategic or learned
control–feature mappings, rather than a rigid relationship between
task features and control policies. The current results show that
participants can independently control target and distractor processing
when these features are independent, and future work should explore
whether control strategies appropriately accommodate other tasks.
Interestingly, participants appeared to suppress distractor

sensitivity even on congruent trials, evident in the right half of
Figure 6D (see also Mante et al., 2013; Pagan et al., 2022),
suggesting that they are not reactively adjusting this control policy
when the trial conditions deem it unnecessary or even detrimental.
On its face, this finding presents a challenge to models that propose
control allocation on the basis of response conflict (Botvinick et al.,
2001; Yu et al., 2009), though much of the evidence for these
theories comes from across-trial adjustments (Botvinick et al., 2001;
Egner & Hirsch, 2005; Kerns et al., 2004; Yeung et al., 2004). The
current results may thus inform understanding of the timescale
over which people plan reactive control adjustments. In some cases,
this decision process may take more time than would be helpful
for fast within-trial reconfiguration.
Our analyses of attentional dynamics depend on participants’ own

response times and choices, raising concerns about selection biases
(i.e., lack of experimental control over reaction times). While
evidence accumulation modeling typically depends on choice-
conditioned reaction times, inferring the time-varying influence of
targets and distractors presents a particular challenge. To address
these concerns, we used simulations to show that the dynamic
profiles we observed cannot be accounted for by an evidence
accumulation model with static gains on target and distractor
processing (Supplemental Figure 4) or models with dynamic changes
to nonselective components like decision threshold (Supplemental
Figure 5). Introducing dynamic feature gains allowed us to account for
those same patterns (Figures 9–11; Supplemental Figure 5). These
results are consistent with previous work validating DDM estimates of
attentional dynamics in conflict tasks (White et al., 2011, 2018). Even
if thesemeasurements are valid, using sparse behavioral measures is an
inefficient method for measuring latent dynamics and may combine
multiple processes (e.g., accumulation and threshold adjustments).
By integrating across multiple convergent measures of decision and
attentional dynamics—including interrogation protocols (Adkins &
Lee, 2021; Hardwick et al., 2019), motor tracking (Erb et al., 2016;
Menceloglu et al., 2021; Scherbaum et al., 2010), and/or temporally
resolved neuroimaging (Fischer et al., 2018; Scherbaum et al., 2011;
Weichart et al., 2020; Yeung et al., 2004)—future work can help

strengthen and build on our understanding of continuous changes in
the configuration of multiple control processes.

The evidence accumulation modeling in the current experiment
was able to categorically rule out several alternative architectures,
demonstrating the necessity and sufficiency of feature-specific
adjustments for capturing the full array of putative attentional
dynamics. Our model validation approach supports our interpreta-
tion of feature-selective adjustments while committing less strongly
to the specific formulation of attentional control (e.g., a specific
model parameterization or the functional form of the collapsing
bound). An important direction for future research should be to
leverage emerging methods for parameter estimation to directly fit
our accumulator model to participants’ behavior (Fengler et al.,
2021;Weichart et al., 2020). This approach will help extend insights
from the current experiment, such as enabling participant-specific
parameters to reveal individual differences in attentional control.

Together, these experiments provide new insight into how we
flexibly adapt to the changing demands of our environment. We find
evidence for flexible control that aligns multiple forms of information
processing with task goals and can be captured by a computationally
explicit process model. The developments from this experiment can
help extend models of cognitive control toward richer accounts of
how multivariate control configurations, such as across targets and
distractors, are optimized during goal-directed behavior.
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