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Abstract
Sustaining focus is difficult, but it is under our control.
Previous research has found that people’s ability to sustain
attention depends on external incentives and changes over
the lifespan. However, previous research has made limited
progress in characterizing the specific cognitive mechanisms
involved in sustained attention. These mechanisms are
investigated in the current experiment, which uses drift
diffusion modeling to re-analyze a series experiments on
sustained attention. In Experiment 1, we found that incentives
influence information processing (noise) but not decision
strategy (threshold). In Experiment 2, we found that noise
and threshold have distinct development trajectories, and
that while older adults have noisier accumulation, they are
better at sustaining attention. These results help provide
mechanistic insight into recent findings in sustained attention.
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Introduction
Achieving our goals often requires sustained attention, such
as when ignoring distractions while writing. This focus is
known to wane with time, a phenomenon called vigilance
decrement (Fortenbaugh, DeGutis, & Esterman, 2017). This
decrement is not a fixed limitation, as it can be reduced
or even eliminated by incentives (Esterman, Reagan, Liu,
Turner, & DeGutis, 2014; Esterman et al., 2016). Sustained
attention also changes over the lifespan, coinciding with
changes in cognitive ability and motivation (Fortenbaugh
et al., 2015). However, the cognitive mechanisms driving
differences in sustained attention remain unclear, including
how and when people control information processing or
response strategies.

Recently developed theories have suggested that
sustained attention depends on actively inhibiting our
default mind-wandering states (Fortenbaugh et al., 2017).
These theories propose that intrusive thoughts introduce
noise into task performance, and are actively suppressed by
domain-general cognitive control. While this framework has
provided a strong theoretical foundation for understanding
the interaction between different cognitive systems, the
attentional and decision processes driving sustained attention
have largely evaded formal analysis (though see Hawkins,
Mittner, Forstmann, & Heathcote, 2019).

A common approach for measuring sustained attention is
to see how performance in speeded reaction time tasks change
over time (Esterman, Noonan, Rosenberg, & Degutis, 2013;
Figure 1a). These tasks can be modeled as an evidence
accumulation process, notably with the drift diffusion model
(DDM; Ratcliff (1978); Figure 1b). Critically, the DDM
can distinguish information processing (e.g., drift rate or
accumulation noise) from response strategies (e.g., decision
threshold or starting point) based on the joint distribution of
reaction time and accuracy.

Prior theoretical work has suggested that participants
control their decision threshold (Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006) or accumulation noise (Manohar et
al., 2015) in order to maximize rewards and minimize effort
(Shenhav, Botvinick, & Cohen, 2013). Given the general role
of motivated control in sustained attention, and the specific
role that this control may play in protecting information
processing from the task-irrelevant noise that is central to the
drift diffusion process, we sought to use the DDM to develop
a process-level model of sustained attention. We re-analyzed
a collection of recent experiments examining how sustained
attention changes under incentives and over the lifespan,
measuring how the different components processes involved
in sustained attention are modified by internal and external
control demands.

Experiment 1

The goals of Experiment 1 were to (1) validate our
computational model of sustained attention and (2) measure
how incentives influence different components of our model.
These data were previously reported in two previous
publications on the influence of reward on sustained attention
(Esterman et al., 2014, 2016).

Methods

Participants 106 individuals participated in Experiment 1.
Participants’ accuracy was very high and negatively-skewed
(median participant: 97%), so we excluded 7 participants
who had less than 80% accuracy (bottom 5th percentile),
leaving 99 participants for the final analysis. All participants
provided informed consent in accordance with their local
university’s institutional review boards.
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Figure 1: Task and model. (A) Participants saw images
morph into one other, pressing a key for city images (go trial;
90%) and withholding a response to mountain images (nogo
trial; 10%). Adapted from Fortenbaugh et al. (2017). (B)
In the drift diffusion model, evidence is noisily accumulated
over time with a drift rate v (here fixed to 1) and accumulation
nose s. When the accumulated evidence hits the threshold
level a, participants either make a response (upper bound) or
withhold a response (lower bound). Adapted from Manohar
et al. (2015). (C) In Experiment 1, participants were
randomly assigned to one of three incentive conditions, either
self-motivated (’no reward’), earning money on each trial for
good performance (’trial-wise reward’), or faced a large loss
for a critical commission error (’looming loss’).

gradCPT task All of the experiments used the gradual
continuous performance task (gradCPT; Esterman et al.,
2013), a variant of the go-nogo task. Participants saw images
of cities and mountains within a central aperture. Each image
linearly morphed into the next one, with full opacity at 800ms
(Figure 1a). Participants were required to make a key press
for city images (‘go’; 90% of trials), and withhold a keypresss
for mountain images (‘nogo’; 10% of trials). Participants
had one minute of practice, followed by a single 10 minute
session encompassing 750 trials.
Reward Manipulation Participants performed the
gradCPT task under one of three different reward
manipulations. Across all three conditions, the trial
structure was identical: participants did not receive any
reward feedback during the experiment. Participants in
the ‘no-reward’ group (n=33) were not given any external
incentives (i.e., were self-motivated).

Participants in the ‘trial-wise reward’ group (n=35) earned
rewards on each trial for good performance. In one sub-group
(n=18), participants received ± $0.01 for accurate/inaccurate
performance on go trials, and± $0.10 for accurate/inaccurate
performance on nogo trials. In the second sub-group (n=17),
participants received an endowment of $18, and were told that

they would lose $0.25 for every commission error (response
during nogo trials), and nogo-preceding omission error (no
response during go trials). We pooled across these reward
conditions, as they had similar first-order performance (see
Esterman et al. (2016), figure 1), and similarly depended on a
per-trial reward contingency.

Finally, participants in the ‘looming loss’ condition (n=31)
received an endowment of $18, and were instructed that they
would lose their endowment if they made an error on a critical
nogo trial, which would be indicated by a colored border.
This critical trial always occurred after the first 10 minutes
of the task, with only these first 10 minutes analyzed.

Evidence Accumulation Model We modelled participant’s
go-nogo performance using the drift-diffusion model
(Ratcliff, 1978), a process model for decision-making that
has previously been applied to the go-nogo task (Gomez,
Ratcliff, & Perea, 2007). In our DDM, participants noisily
accumulate evidence about the stimulus category (city or
mountain), and make the corresponding go or nogo response
when this evidence reaches a fixed threshold. Both the rate
of accumulation (‘drift rate’) and threshold are normalized
by accumulation noise. On trials in which participants made
a response, we estimated the approximate joint probability
of their response and reaction time (RT) under our model
(Navarro & Fuss, 2009), and on trials where participants did
not make a response, we estimated the probability of their
response under our model.

Previous experiments have proposed that there is motivated
control over accumulation noise during decision-making
(Manohar et al., 2015), analogously to how motivated control
reduces motor variability (Manohar, Finzi, Drew, & Husain,
2017; Pekny, Izawa, & Shadmehr, 2015), and consistent with
neuroscientific evidence for top-down control over sensory
noise (Nakajima, Schmitt, & Halassa, 2019). These findings,
alongside observations from the original experiments that RT
variability (but not mean RT) was sensitive to incentives and
fatigue, motivated our focus on accumulation noise.

Our model contained six free parameters: threshold, go
trial accumulation noise (‘go-noise’), nogo trial accumulation
noise (‘nogo-noise’), lapse rate, and the (linear) rate of
change in threshold and go-noise across the session (Figure
1b). We fixed the drift rate to 1 in all models, as it
cannot be uniquely estimated alongside threshold and noise.
The lapse rate determines the probability that response RTs
were uniformly distributed and that no-response choices were
random, improving the robustness of the model fit and an
additional index of (in)attention. The threshold change and
noise change parameters capture the difference in parameters
between the final and first trial. We interpolated the overall
threshold and noise parameters to the midpoint of the session
for ease of interpretation.

We fit separate noise parameters for go and nogo trials
to capture generic differences between these conditions,
such as differences in familiarity or reactive stopping
processes, similarly to previous models for the go-nogo task
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(Ratcliff, Huang-Pollock, & McKoon, 2018). While the
strong imbalance of trial types (90% go trials) would make
starting point an alternative candidate, the small number of
commission errors made this parameter difficult to reliably
estimate.

We fit our model’s parameters to participants’ behavior
using hierarchical Expectation-Maximization (EM; Huys et
al. (2011)). EM alternates between maximum likelihood
estimation of the parameters under a group-level multivariate
normal prior (M-step), and updating this group prior based
on the point estimates of participants’ parameters (E-step),
repeating these two steps until convergence. We reinitialized
the parameters three times within each maximization step to
improve robustness. We removed the first 16 trials of each
session, as these were much slower and more variable than
the rest of the session, as well as rare trials where RTs were
faster than 400ms or slower than 1600ms.

Results
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Figure 2: Experiment 1. (A) Left, RT distributions for a
set of participants evenly spaced across the range of model
likelihood (black), overlaid with the model-predicted RT
distribution (red). Right, the correlation between individual
differences in observed and model-predicted accuracy, both
for real performance (top) and ranked performance (bottom).
(B) DDM parameters across the three reward conditions.
Contrasts indicate significant simple effects (p < .05); error
bars are SEM.

Model Validation To validate our model of sustained
attention, we first confirmed that we were able to successful
recover our parameters. We were able to accurately estimate
the parameters that generated simulated behavior within the
range observed in participants (correlation between simulated
and recovered parameters: all rs > .85).

Next, we confirmed that our model parsimoniously
captured participants behavior. We fit a flexible model in
which both drift rate and threshold parameters varied between
go and nogo trials. We found that drift rate and threshold
were highly correlated within go trials (r = .74), and differed
across conditions by a similar ratio (r = .69), consistent with
a noise parameter that normalizes both of these terms and
differed across conditions.

Finally, we performed posterior predictive checks to
confirm that our model captures the underlying behavior
(Gelman, Meng, and Stern (1996); Frank et al. (2015).
Our model appeared to capture participants’ RT distribution
across the range of model fit (Figure 2a). We also found that
our model’s predictions of individual differences in accuracy
were highly correlated with ground-truth performance (go
trials: r > .99; nogo trials: r = .83). However, our
model systematically overestimated participants’ accuracy,
especially during nogo trials (Figure 2a). These discrepancies
likely arise due to nogo trials’ relatively small contribution to
the overall fit (only making up 10% of trials), and trade-offs
that fit participants’ peaked RT distributions.

Reward Manipulation We found that go-noise (F2,96 =
6.32, p = .0026) and nogo-noise (F2,96 = 23.4, p =
5.3e-9; Figure 2b) significantly differed by reward condition.
Participants in the no-reward conditions were significantly
noisier than those in the reward conditions during both
go and nogo trials, consistent with motivated control over
accumulation noise (Manohar et al., 2015). In contrast,
participants had highly similar thresholds across reward
conditions (F < 1; BF10 = .095; Reward Group × Parameter
(noise, threshold): F2.7,131 = 8.59, p = 5.5e-5).

We found inconclusive evidence for whether lapse rate
varied across groups (F2,96 = 3.96, p = .022, below Holm- or
Bonferroni-corrected thresholds). Lapse rate was correlated
with both go-noise (r = .61) and nogo-noise (r = .49),
but condition differences for noise parameters remained
significant when controlling for lapse rate. It is plausible
that noise terms and lapse rate similarly reflect task-irrelevant
distraction.

Participants’ go-noise decrement depended on their reward
condition (F2,96 = 13.0, p = 7.21e-6). Participants in the
no-reward and trial-wise reward conditions became noisier
over the course of the experiment, whereas participants in
the looming loss condition maintained the same level of
performance through-out the experiment (Figure 2b). In
contrast, there was little difference across reward conditions
in how participants’ threshold changed over time (F < 1,
BF10 = 0.15; Figure 2b), with all participants becoming more
conservative over the course of the experiment (MAP t-test:
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t98 = 3.79, p = 2.7e-4; Reward Group × Parameter (noise,
threshold): F2,96 = 4.35, p = .016).

Discussion
This experiment validated our model of sustained attention.
We found that our model was identifiable, and did a good
job capturing participants’ reaction times and individual
differences in accuracy, albeit with optimistic expectations
for their accuracy. These results suggest that our relatively
simple model was sufficient to largely capture effects of
interest, and particularly how these effects depend on
between-participant differences in reward condition.

Our model revealed that incentives influenced different
components of the decision process. Whereas participants
had a similar decision thresholds across reward conditions,
we found that participants decreased their overall noise in
reward conditions, and eliminated the change in noise in
the looming loss condition. These effects demonstrate that
our model was able to capture participants’ selective control
over different facets of the decision process in response to
heightened motivation.

Given that our model appeared to reflect reliable and
dissociable mechanisms involved in sustained attention, we
next sought to replicate this model to a large online sample,
using the diagnostic power of this model to investigate how
sustained attention changes in response to the motivational
and cognitive changes that occur over the lifespan.

Experiment 2
The goal of Experiment 2 was to (1) replicate our model
findings in a large, well-powered sample (2) to measure
how sustained attention changes over the lifespan. Changes
in sustained attention over the lifespan may reflect several
facets of attentional control, such as differences in motivation,
judgements of ability, and subjective effort costs (Swirsky
& Spaniol, 2019). Previous research has consistently
found that older participants have higher decision thresholds
(Starns & Ratcliff, 2010; Ratcliff, Thapar, & McKoon,
2001), but little is known about about how aging influences
the decrement of mechanistic decision parameters over the
course of an experimental session. By measuring how
different components of our process model change over the
lifespan, this experiment can help identify targets for control.
Model-agnostic analyses of a subset of these data were
previously reported in (Fortenbaugh et al., 2015).

Methods
Participants 21,409 participants took part in Experiment
2. Participants performed the gradCPT task online at
TestMyBrain.org through voluntary sign-up. Participants did
not complete any other tasks. We excluded 138 participants
for accuracy less than 80%, a sub-group that roughly matched
the age distribution of the sample as a whole. Participants
were representative of a broad age range (Figure 3a). This
experiment was approved by a local institutional review
board.

Procedure and Analysis Participants performed the same
task as in Experiment 1, hosted online at TestMyBrain.org.
The web version of this task was 4 minutes long,
encompassing 300 trials. We used an identical likelihood
function as in Experiment 1, except that we did not use
hierarchical priors for this analysis due to the large sample
size, and to better measure individual differences. While
these data are fundamentally cross-sectional, our large
sample size provides good power to examine population-level
changes across the lifespan.
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Figure 3: Experiment 2. (A) Age distribution across our
sample. (B) Participants’ estimated parameters plotted as
a function of their age. Red dashed lines are predicted
parameters from (non)linear regression models. Grey shaded
area indicates SEM.

Results
Model Validation We found that the quality of model fit
in Experiment 2 largely replicated our observations from
Experiment 1. Model-generated performance was highly
correlated with individual differences in accuracy (go trials:
r = .99; nogo trials: r = .88), but was similarly optimistic.

Threshold and noise demonstrate dissociable
relationships with age We observed qualitatively
different developmental trajectories for threshold and
noise (see Figure 3b). While threshold rapidly declined
for the youngest participants, the trend was dominated
by a linear increase in threshold over the lifespan. In
contrast, noise developed non-linearly, decreasing early in
development and increasing in development. Comparing the
relationship between these parameters and age, we found
that threshold had a stronger linear relationship with age than
either go-noise (coefficient test: F > 3000) or nogo-noise
(F > 4000; Figure 3b). These observations are consistent
with observations that older adults have larger thresholds
(value accuracy over speed; Starns and Ratcliff (2010)), and
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have noisier reaction time distributions (Ratcliff et al., 2001).

Different forms of noise have differential trajectories
over the lifespan Closer inspection of the change in go-
and nogo-noise over the lifespan reveal that they exhibited
distinct developmental trajectories (Figure 3b). We modelled
these trajectories using a six parameter piecewise exponential
function, fitting separate growth curves before and after
estimated transition ages using non-linear regression:

noise =

{
a× exp(b×age)+ c, if age < t
a′× exp(b′× (age− t))+ c, if age≥ t

Go-noise rapidly decreased during adolescence (predicted
age to reach 99% of asymptote: 24.6 years old), whereas
nogo-noise developed more slowly (99% of asymptote: 41.2
years old; between-parameter t-test on early growth rate:
t = 43.2, p << .001). In contrast, go-noise increased
more slowly over the lifespan, whereas nogo-noise quickly
increased later in life (between-parameter t-test on late
growth rate: t = 3.03, p = .0012). These effects were robust
to including lapse rate as a covariate.

Developmental trajectory of vigilance While participants
in both experiments became noiser over the session, the
rate at which participants got noisier decreased over the
lifespan (t = −13.7, p = 7.9e-43). Interestingly, we found
that within-session changes in threshold and noise traded-off
against each other, such that participants were showed greater
threshold change exhibited weaker go-noise change (r =
−.27; Figure 3b), a feature that was absent in simulated
behavior.

Whereas participants’ Experiment 1 became more
conservative within a session, participants in Experiment 2
became more liberal within a session (t =−58.2, p<< .001).
We found a linear trend across the lifespan indicating
that older participants became liberal more quickly
(t =−11.8, p = 8.0e-32; Figure 3b).

Discussion
We found that the same model which fit behavior in our
laboratory experiment generalized to a large online sample,
here additionally teasing apart developmental trajectories for
different facets of sustained attention.

We first found that the decision-related (threshold) and
attention-related (noise) components of task performance
exhibited dissociable developmental trajectories. Whereas
threshold exhibited a largely continuous increase over
the lifespan, accumulation noise exhibited a U-shaped
developmental course. These results support observations
in the original paper that first-order behaviors cluster into
‘strategy’ (mean RT, criterion) and ‘ability’ (RT variability,
sensitivity) factors (Fortenbaugh et al., 2015). Critically, the
current analyses provide process-level insight into this factor
structure.

While the trajectory of both noise parameters differed from

threshold, they also differed from each other in important
ways. Whereas go-noise developed quickly and decayed
slowly, nogo-noise developed slowly and decayed quickly.
These results are consistent with distinct control strategies for
facilitation and suppression, and motivate future experiments
examining how these different control strategies change over
the lifespan.

Finally, we found gradual developmental changes in how
attention was sustained within a session. Surprisingly, older
adults were better than younger adults at sustaining their level
of go-noise, contrary to classic research that found increased
vigilance decrements over the lifespan (Parasuraman, Nestor,
& Greenwood, 1989). While older adults were overall
noisier than younger adults, they sustained attention better
than similarly noisy adolescents. A potential explanation
for this finding is that the older adults may have been more
motivated to monitor their performance. Consistent with this
interpretation, the original experiment found that older adults
had stronger post-error slowing in this task (Fortenbaugh
et al., 2015). This explanation is speculative, and future
experiments should specifically investigate process-level
contributions to vigilance over the lifespan.

Older participants’ also showed a different threshold
timecourse, shifting liberal more quickly than younger
participants. Older participants’ shift coincided with their
higher overall thresholds, potentially reflecting a gradual
optimization of threshold (though see: (Starns & Ratcliff,
2010)). Future work should compare participant against
the reward-optimizing configuration (Bogacz et al., 2006;
Manohar et al., 2015).

General Discussion
Across these two experiments, we found that our adapted drift
diffusion model usefully captured participants’ performance
in an established sustained attention task, revealing
dissociable changes in the underlying decision process
elicited by different motivational states and developmental
stages. These experiments demonstrate the utility of
formalizing task performance with computational models that
can carve up the underlying cognitive processes.

In Experiment 1, we found that participants reduced
their accumulation noise when they were incentivized, and
they could eliminate the vigilance decrement when facing
a large looming loss. Our model was able to identify the
targets of motivated control, dissociating the changes in
decision threshold and accumulation noise that researchers
have proposed are optimized for reward (Bogacz et al., 2006;
Manohar et al., 2015). What our model does not address
is how control is specified, such as why the looming loss
condition eliminates the vigilance decrements. However, a
potential explanation may come from the optimal control
literature that motivates DDM optimization models (Manohar
et al., 2015; Shenhav et al., 2013). An optimal policy depends
on both the current reward and the expected future returns
(Bellman, 1957), expected future returns that decrease over
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the course of the session for trial-wise rewards, but which
plausibly remain constant or increase for the looming loss
condition. This hypothesis should be formalized and tested
in future experiments.

In Experiment 2, we found that our model parameters
were further dissociated by their distinct developmental
trajectories. Again, our approach usefully isolates the
trajectory of different processes, but doesn’t address why
they change. Developmental changes in sustained attention
likely reflect a myriad of causes, such as changes in
strategy, motivation to engage in the experiment, and
cognitive ability. Further progress towards addressing
these fundamental questions require large-scale longitudinal
experiments that combine psychometric and cognitive
modelling of how control changes over the lifespan
(Ferdinand & Czernochowski, 2018).

While the current set of experiments demonstrate the
utility of this model, there are notable limitations to our
approach. Our model strongly over-estimates participants’
accuracy. One extension of our model could be to include
a collapsing decision threshold, allowing us to capture
participants’ peaked reaction-time distributions at higher
levels of accumulation noise. Another expansion could be
to better capture the local adjustment to performance, such
as repetition biases, rhythmic responding, post-error slowing,
that may contribute to participants’ accuracy (Urai, de Gee,
Tsetsos, & Donner, 2019). Future work should provide a
more complete picture of within- and across-trial dynamics,
and confirm our characterization of how parameters depend
on incentives and age.

These experimental results are consistent with models
of attentional control that connect the motivated reduction
of accumulation noise during decision-making to motivated
reductions in motor noise during actions (Manohar et
al., 2015, 2017). The current set of results validate
and extend these theories, showing that the across-trial
maintenance of noise is also under motivated control. These
findings raise interesting theoretical questions about the
algorithmic similarity of optimization processes across motor
and cognitive control (Ritz, Frömer, & Shenhav, 2019).
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