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their formal knowledge about probabil-

ities to infer SEUs (remember that par-

ticipants were university students).

Both studies, however, reported

several additional key findings when

lottery probabilities were not explicitly

instructed, which supports a more gen-

eral, parsimonious, and mechanistic

view encompassing all these cases.

Rouault et al. showed that, consistent

with previous proposals by Louie et al.

[7], reward values independently

contributed to choices through a

normalization process that made them

commensurable to reward probabili-

ties. These authors further noted that

if these normalized quantities contrib-

uted to choices with equal weights,

these choices would be similar to those

derived from SEU computations. We

can accordingly reason that even in

the verbally instructed condition, the

choices of participants might derive

from an independent, equally weighted

contribution of these quantities. Fara-

shahi et al. reported a finding that sup-

ports this hypothesis: the more volatile

(or changing) the decision situation

was, the less the probabilities’ contribu-

tion was overweighed, that is, the

more probabilities and values tended

to contribute to choices with equal

weights [4]. Moreover, the verbally in-

structed condition actually corresponds

to a hypervolatile situation: when verbal

instructions made lottery probabilities

explicit, participants were de facto in-

structed that each trial differed and

was unrelated to the preceding ones.

Altogether, these findings lend weight

to the idea that whatever the situation,

human (and monkey) choices derive

from the independent contribution of

various subjective quantities including:

the probabilities of prospective re-

wards, their values normalized across

choice options and the reinforcement

history of the options, with relative

weights adjusting to the volatility of

the decision context.
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This model is parsimonious as the rela-

tive weighting of these quantities

might replace the need to consider

multiple distortions of subjective

compared with objective probabilities

to make the SEU hypothesis consistent

with human data in various contexts

[8]. The model may reflect indepen-

dent brain systems that concurrently

influence choices or the valuation of

choice options through the addition

of multiple value components. As

weighted sums may also be viewed

as Lagrange functions [9], the model

may also reflect that decision-making

optimizes some quantities given

some constraints (e.g., choose the

safest option, unless the associated

prospective reward is dramatically

smaller). As the weighting depends

upon the volatility of the environment

[10], the model further bridges the

notion of decision-making and adap-

tive behavior. Thus, the studies

of Farashahi et al. [4] and Rouault

et al. [3] both open the way for

exciting future research to determine

whether and how the model general-

izes and adjusts the independent

contribution to various uncertain and

changing situations, including multiple

choice options and outcomes. Future

research might notably establish the

principles accounting for the efficiency

of this adaptive decision model in real-

life environments and for its evolution

in primates. In other words, the princi-

ples that in real-life environments

featuring uncertain, changing, and

open-ended situations, make this de-

cision model more rational than the

Rational Decision Theory.
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Spotlight
Bridging Motor and
Cognitive Control:
It’s About Time!
Harrison Ritz,1 Romy Frömer,1

and Amitai Shenhav1,*

Is how we control our thoughts similar

to how we control our movements?

Egger et al. show that the neural dy-

namics underlying the control of inter-

nal states exhibit similar algorithmic

properties as those that control move-

ments. This experiment reveals a prom-

ising connection between how we con-

trol our brain and our body.

We often describe our mental states

through analogy to physical actions.

We hold something in mind or push it

out of our thoughts. An emerging ques-

tion in cognitive control is whether this
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‘Open-loop’ hypothesis‘Open-loop’ hypothesis

‘Internal model’ hypothesis‘Internal model’ hypothesis

MeasurementMeasurement

SimulationSimulation

Figure 1. Alternative Hypotheses for Internal State Control.

Monkeys observed two sample time intervals (top) and then tried to reproduce the interval (not

shown). There were two competing hypotheses for the form brain dynamics would take during the

second sample interval. Under the ‘open-loop’ hypothesis, neural activity should not distinguish

between expected durations, instead reflecting passive measurement of time. Under the ‘internal

model’ hypothesis, neural activity should distinguish between expected durations, producing a

simulation that aids in learning and control. The authors observed that neural responses were

consistent with the internal model hypothesis, aligning the control of internal states with prominent

theories of motor control. Task figure adapted from [3].
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relationship runs deeper than meta-

phor, with similar cognitive architec-

tures underpinning our ability to control

our physical actions and our mental

states. For instance, recent work has

shown that analogous control pro-

cesses serve to optimize performance

and regulate brain dynamics for both

motor and cognitive actions [1,2]. A

new study by Egger and colleagues [3]

provides important new clues that the

mechanisms supporting motor and

cognitive control are more similar than

previously shown.
These researchers tested whether the

control of internal states exhibits a signa-

ture property of the motor system: the

relianceonan internalmodel toguide ad-

justments of control [4]. To control one’s

actions, a person needs tomaintain an in-

ternal model of their environment (e.g.,

potential changes in terrain or atmo-

sphere) and of their own motor system

(e.g., howsuccessful theyare atexecuting

amotor command [5]). Thismodel can be

used to generate online predictions

about the outcome of an action and to

course-correct when there is a mismatch
Trends in Cognit
between that prediction and the actual

outcome. This process is thought to be

implemented via interactions between:

(i) a simulator that makes predictions, (ii)

an estimator that learns the current state,

and (iii) a controller that implements ac-

tions. This new study investigated

whether neural activity during the control

of cognitiveprocesses reflected this same

three-part architecture.
To answer this question, Egger and col-

leagues recorded neural activity while

monkeys performed an interval repro-

duction task (Figure 1). The monkeys

observed two samples of a time interval

and then timed a saccade to reproduce

this interval. Previous work has shown

that population-level neural activity in

the dorsomedial frontal cortex (DMFC)

during similar tasks systematically scales

with the timing of an action [6]. If action

timing in this task depends on an internal

model, then this temporal scaling should

already be present in DMFC activity prior

to receiving a cue to respond. If the mon-

keys were not relying on an internal

model, and the activity instead reflected

the passive measurement of time

(‘open-loop’ control), then DMFC activity

during the second interval should not

exhibit such temporal scaling.
The monkeys’ behavior and neural ac-

tivity demonstrated that they combined

prior knowledge about the average in-

terval duration with their perception of

the current interval duration [7]. This

behavior was well-captured by a near-

optimal Bayesian algorithm that up-

dated predictions in a way that was

biased towards the average interval.

By independently varying the duration

of the two sample intervals, the authors

were further able to show that the mon-

keys incorporated both samples into

their duration estimate.

Signatures of this biased updating pro-

cesswere also observed inDMFCneural
ive Sciences, January 2020, Vol. 24, No. 1 7
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activity. Replicating previous studies,

individual neurons in the DMFCdemon-

strated ramping activity during the

reproduction of an interval, with faster

ramping when the monkey reproduced

shorter intervals [6]. Critically, neural ac-

tivity during the second sample interval

exhibited the predicted simulation pro-

file: neurons demonstrated interval-

dependent ramping during this epoch,

prior to the response cue.

Further support for an internal model hy-

pothesis was found across different mea-

sures of neural activity, and in their rela-

tionship with subsequent behavior.

Temporal scaling was evident not only at

the level of DMFC single neurons but

also in the population-level neural dy-

namics across this region. Unlike the tran-

sient single-unit responses, the rate of

change in these population dynamics

scaled consistently with interval length

throughout the second sample interval.

These dynamics reflected the same

Bayesian biases observed in monkeys’

behavior: an initial bias towards the

average interval duration that became

less biased with more samples. Critically,

thesepopulationdynamics alsopredicted

when the monkey would saccade on the

upcoming response interval, and did so

above and beyond what would be pre-

dicted by the lengths of the sampled

time intervals alone. Collectively, these

findings are consistent with the DMFC im-

plementing an internal model to optimize

the learning of task goals and the control

of neural population dynamics.

This study provides evidence that

DMFC mediates the influence of prior

predictions and incoming sensory evi-

dence on planned actions, and lays

the groundwork for critical tests of this

proposed mechanism using causal ma-

nipulations (i.e., stimulation or inactiva-

tion). Such causal tests can also help to

rule out alternative accounts of neural

dynamics during the sample intervals,
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for instance, whether they reflect a

simulated motor plan (as the authors

infer) or an interval expectation (e.g.,

predicting the onset of the interval cue

[8]). Nevertheless, by elaborating on

the neuronal dynamics within DMFC

during a task that requires online ad-

justments of learning and control, this

study builds on a growing literature

that implicates regions along this dor-

somedial wall in the control of motor

and cognitive commands [9,10].

More generally, this research provides

compelling new evidence that motor

and cognitive control share a common

computational toolbox. Past work has

suggested that both forms of control

serve similar objectives (achieving a

goal state within a dynamic, uncertain,

and noisy environment) and that they

are also both constrained by some un-

derlying cost, limiting the amount of

control that individuals can engage at

a given time. As a consequence, deci-

sions about how to allocate one’s con-

trol are sensitive to whether the reward

for goal achievement outweighs these

costs [10]. To the extent computational

and neural architecture for motor and

cognitive control allocation mirror one

another, the behavior and neural dy-

namics observed in the current task

should demonstrate sensitivity to per-

formance incentives for both forms of

control.

In spite of their abundant bodies of

research, the obstacle to bridging our

understanding of motor and cognitive

control have been similarly abundant,

including limitations of tasks, measure-

ment tools, and model organisms. This

study demonstrates how a combination

of computational modeling and mea-

sures of neural dynamics in the monkey

can be leveraged towards this goal and,

in doing so, provides a valuable path

forward in mapping the joints between

these two domains of control.
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The efficacy and reliability of using

intranasal oxytocin (OT) to clinically

enhance social functions remains
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