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Abstract

Decades of research have established that while people’s
performance suffers when they need to quickly switch
between tasks, they can reduce these performance costs
the more time they have to prepare. Two major theories
have attempted to explain how people actively prepare for
tasks over time, debating whether these task state transitions
are discrete or gradual. We attempted to bring clarity
to this debate by developing new statistical methods for
single-trial modeling of task state transitions, which we
use in a task that combines the strengths of cued and
predictable task-switching. We found that participants’
behavior was best explained as a hybrid between discrete and
gradual transitions. Over the preparation period, participants
discretely transitioned from an unprepared state into a
dynamic, increasingly prepared state. These findings provide
a new account of cognitive flexibility, paving the way for
mechanistic models of task-switching.
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Introduction

It is obvious to anyone with a busy life how difficult it can
be to switch between multiple tasks. Foundational research
has confirmed that people perform more poorly when they
need to change tasks (Jersild, 1927; Spector & Biederman,
1976; Allport, Styles, & Hsieh, 1994; Monsell, 2003; Koch,
Poljac, Müller, & Kiesel, 2018). These ‘switch costs’ can
be reduced, though not completely eliminated, if participants
are given more time to prepare (Rogers & Monsell, 1995;
Meiran, 1996). This cognitive flexibility is fundamental
to goal-directed behavior, with research identifying task
switching as a core factor structuring individual differences
in executive functioning (Friedman & Miyake, 2017). While
substantial progress has been made in developing qualitative
theories of switch costs, progress has been slower on
developing mechanistically explicit and quantitatively precise
process models of how people reconfigure task processing.

There have been two major proposals that explain how
people switch between ‘task sets’, the stimulus-response
mapping appropriate for each task (Rogers & Monsell, 1995).
The first approach proposes that people make continuous
adjustments, gradually transitioning from one task set to
the other. This approach is supported by how switch

costs parametrically change over preparation time (Rogers
& Monsell, 1995), leading to dynamical systems model of
reconfiguration (Gilbert & Shallice, 2002; Yeung, Nystrom,
Aronson, & Cohen, 2006; Ueltzhöffer, Armbruster-Genç,
& Fiebach, 2015; Musslick, Jang, Shvartsman, Shenhav, &
Cohen, 2018; Steyvers, Hawkins, Karayanidis, & Brown,
2019; Jaffe, Poldrack, Schafer, & Bissett, 2022). The
second approach has proposed that people make discrete
adjustments, with all-or-none transitions from one task set
to the other. This has been influenced by distributional
analyses showing that switch costs differ for faster and
slower RTs (De Jong, 2000; Nieuwenhuis & Monsell,
2002), leading to theories that emphasize the successful
recollection of task sets from memory (Mayr & Kliegl, 2000;
Monsell, 2003). These proposals have neglected a third,
hybrid option, in which people discretely transition between
different continuous processes. In dynamical systems theory,
this classes of processes are known as ’switching dynamical
systems’ (Ackerson & Fu, 1970), which have recently started
to gain popularity as models of neural dynamics (Linderman,
Nichols, Blei, Zimmer, & Paninski, 2019; Glaser, Whiteway,
Cunningham, Paninski, & Linderman, 2020).

Here, we report an experiment that aimed to compare
these different accounts of task set reconfiguration. First,
we develop a novel task designed to maximize our
ability to measure time-varying changes in task preparation,
while minimizing the influence of confounds arising from
associative learning (Logan & Bundesen, 2003; Arrington,
Logan, & Schneider, 2007; Koch & Allport, 2006). Second,
we develop a novel trial-level analysis of continuous and
discrete reconfiguration to quantify the predictions made by
these different accounts. Consistent with the hybrid theory,
we find that participants showed evidence for both continuous
and discrete dynamics during task set reconfiguration.

Methods

Task Design

We developed our task to facilitate a number of specific
objectives. First, we wanted to maximize task differences,
potentially increasing reconfiguration costs and facilitating
future neuroimaging analyses. To this end, we used a
cross-modal design, in which participants switched between
visual and auditory tasks.
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Figure 1: Task design. A) In each trial, participants simultaneously saw a word and heard a word, responding to the relevant
dimension. B) At the beginning of each block, participants read a task list, instructing the order in which to perform the reading
and listening tasks. They then performed each task over the course of a random-duration mini-block, switching to the next task
on the list when they received a generic Task Cue. The preparation time for the next task randomly varied across task transitions
(most common range: 200 - 800 ms, see Task Design in Methods).

On every trial, participants saw a word on the screen and
heard a word over headphones (Figure 1A). The words were
(Left, Right, Part, Port), and were randomly selected for each
dimension on each trial. Participants had to attend to either
the visual or the auditory dimension (see below), responding
on a button box with a left keypress to (Left or Part) and a
right keypress to (Right or Port). This task Incorporated both
stimulus-response conflict (i.e., with Left and Right having
strong response affordances) and stimulus-stimulus conflict
(i.e., with Part and Port having greater perceptual similarity;
Kornblum, Hasbroucq, & Osman, 1990; Egner, 2008). Both
forms of conflict should encourage participants to focus their
attention on the instructed task. Participants had 2 seconds
(N=47) or 5 seconds (N=12) to respond, and between each
trial there was a short ITI (250 - 350 ms).

Another objective of this task was to maximize
task-switching requirements, while avoiding cue-priming.
Previous experiments have suggested that cued
task-switching may be driven by associative learning
between the task cue and task set, rather than an endogenous
control process (Logan & Bundesen, 2003; Kiesel et al.,
2010). This concern can similarly disrupt neuroimaging
analysis (i.e., confounding task and cue decoding). To avoid
such cue-priming, we used a generic cue for all tasks (Figure
1B).

Participants performed 128 blocks over the experiment,
each broken up into three mini-blocks. At the beginning
of each block, participants were given a list of three tasks
to perform in order (e.g., READ, LISTEN, LISTEN). This
list always had one switch (e.g., READ to LISTEN) and one
repeat (e.g., LISTEN to LISTEN). Participants self-initiated
the first mini-block, performing the first task on the list (e.g.,
READ). Each mini-block had a random number of trials, with
a Poisson distributed length (rate = 0.5) after a minimum of
2 trials (i.e., average length of 2.5 trials). Multiple trials in a

mini-block should encourage participants to commit to each
task (Musslick, Bizyaeva, Agaron, Leonard, & Cohen, 2019;
Yeung et al., 2006), and random mini-block lengths should
discourage preparation for the next mini-block (though see
below).

After the mini-block, participants received a generic Task
Cue instructing them to perform the next task, without
explicitly indicating the task itself (i.e., requiring participants
to remember it from the initially presented list). Across
task versions, the Task Cue was either a blue fixation
cross (N=18) or a blue cross paired with an auditory tone
(N=41). The block ended after participants performed all
three mini-blocks. Each mini-block had one task switch and
one task repeat, producing 128 well-matched trials of each.

The third objective of this task was to measure participants’
reconfiguration dynamics from their behavior. We did
so using a standard approach of manipulating the amount
of preparation time available between tasks, varying the
cue-stimulus interval (CSI; Rogers & Monsell, 1995; Meiran,
1996; De Jong, 2000). The CSI is measured from the onset
of the Task Cue to the onset of the first trial in the mini-block,
and we uniformly varied the CSI across trials (250 - 750 ms in
N=18; 200 - 800 ms in N = 41). The final 100 ms contained an
alerting cue to minimize onset uncertainty (the blue fixation
cross turned white).

We collected three variants of the task over the course
of piloting, which differed in their trial duration and/or cue
stimulus. While we expect that these variants influenced
performance, the data are underpowered to detect differences
between task versions, and thus we have aggregated them for
all analyses, using hierarchical analyses in order to minimize
the influence of participant or task-version outliers.
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Participants Fifty-nine participants performed the
experiment at Princeton University (mean age = 19.4; 53%
female gender). We removed 3 participants for unusually
poor performance (less than 70% accuracy across all
trials), leaving a sample of 56 participants. All participants
provided informed consent, and the experiment was fully in
accordance with the Princeton Institutional Review Board.

Results

Conflict depends on target and distractor prepotency

On each trial, stimuli were either congruent (e.g., Left and
Left) or incongruent (e.g., Left and Right). The target and
distractor dimensions also had low or high prepotency (e.g.,
responding to Left affords a response, whereas responding
to Part is a recently-learned arbitrary mapping). We
used mixed effects regression (MixedModels.jl) to analyze
accuracy and log RT on correct trials (removing post-error
trials and RTs < 200 ms; Performance = Congruence *
(TargetPrepotency + DistractorPrepotency)). We found that
participants were faster and more accurate when the task
was congruent (logRT: t = �11.3, p < 10�28; Accuracy:
t = �12.9, p < 10�37) and the target was easy (logRT:
t = �15.6, p < 10�54; Accuracy: t = �11.9, p < 10�31).
Looking more closely at how prepotency interacted with
congruence, we found that conflict depended on both targets
and distractors. Target ease always improved performance,
but had a stronger effect when the task was incongruent
(Figure 2A; Congruence ⇥ TargetPrepotency, logRT: t =
2.45, p = .0142; Accuracy: t = 4.04, p < 10�4). In
contrast, distractor ease helped when the task was congruent,
but hurt when the task was incongruent (Figure 2B;
Congruence⇥DistractorPrepotency, logRT: t =�5.09, p <
10�6; Accuracy: t = 4.73, p < 10�5). These analyses provide
evidence of conflict between the tasks, necessitating selective
attention for good performance (Posner & Snyder, 1975;
Cohen, Dunbar, & McClelland, 1990).

Task-switching improves with preparation time Given
the evidence for the between-task competition that
necessitates cognitive control, we next investigated how
people switch between tasks. We used Mixed Effects
Regression to quantify how performance on the first trial
of a mini-block depends on task-switching and preparation
time (Performance = Switch * CSI). Participants’ key
behavioral trends were largely consistent with previous
work (Figure 3A; Rogers & Monsell, 1995). Participants
performed worse on switch trials than repeat trials (logRT:
t = �13.2, p < 10�39; Accuracy: t = �5.75, p < 10�8), and
switch costs were were reduced with more preparation time
(logRT: t = 6.67, p < 10�10; Accuracy: t = 1.86, p = .0628).
Preparation effects were stronger for RT than Accuracy,
as has been observed previously (Nieuwenhuis & Monsell,
2002).

Previous work has found that conflict sensitivity is higher
after switching tasks (Rogers & Monsell, 1995; Goschke,
2000; Wylie & Allport, 2000), though some have reported
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Figure 2: Conflict and feature prepotency. A) Participants
performed better when the target was easy and the distractor
was congruent. Target prepotency had a larger effect
on incongruent trials than congruent trials. B) Distractor
prepotency disrupted performance when the distractor was
incongruent and helped performance when the distractor was
congruent. Pairwise contrasts: ⇤⇤ p < .01;⇤⇤⇤p < .001.

inconsistent findings (Jongkees, Todd, Lloyd, Dayan, &
Cohen, 2023; Fagot, 1994). This has been used as an index
of how sensitive participants are to the previously performed
task. However, we did not find strong evidence for increased
conflict costs on switch trials (one-tailed test of the Switch
⇥ Congruence interaction: logRT: p = .071, Accuracy p =
.072), and no modulation by CSI. Since most tasks do not
vary target prepotency, our task can extend this account by
also measuring changes in target processing. While we
did not see an interaction between task-switching and target
difficulty in RT (p = .33), in Accuracy we found that target
prepotency had a weaker influence on switch trials (p= .021),
consistent with reduced sensitivity to target information after
switching. Together, we found that participants were less
sensitive to targets after switching tasks, but that there
was weaker evidence for switch-dependent task interference,
potentially more consistent with reconfiguration than theories
of ’task set inertia’ (Allport et al., 1994).
Participants switch between tasks both discretely and

continuously A classic challenge to dynamical models of
task-switching suggests that the relationship between CSI
and switch costs is an artifact of averaging over trials.
Instead, each trial is due to either an ‘unprepared’ or a
‘prepared’ state, with participants discretely switching from
unprepared to prepared over the course of the CSI (De Jong,
2000; Nieuwenhuis & Monsell, 2002). Consistent with this
hypothesis, the distributions of participants’ reaction times
appeared to have two modes (Figure 3B).

Discrete task-switching models are often assessed using
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Figure 3: Performance linearly improves with preparation
time. A) Longer cue-stimulus intervals (CSI) reduced
participants’ switch costs. On switch trials (orange),
participants were faster (left) and made fewer errors (right)
with longer CSIs, whereas CSI had a much weaker influence
on repeat trials. CSI is binned for visualization. Error
bars reflect within-subject standard error; trend lines are
predictions from mixed effects regression. B) Post-switch
reaction time distributions from an example participant.
‘Long CSI’ are the longest 25% of CSIs (> 600 ms), ‘Short
CSI’ are the shortest 25% of CSIs (< 334 ms).

a group-averaged measure of RT quantiles, which are
not amenable to hierarchical analyses that can capture
individual differences and trial-to-trial changes. To provide
a rigorous comparison between the continuous and discrete
switching hypothesis, we constructed trial-level statistical
models representing each hypothesis, and then systematically
compared how well they fit participants’ behavior. We fit
different models using hierarchical expectation maximization
(EM.jl), which alternates between estimating participants’
best-fitting parameters under the group prior (E-Step)
and updating group-level prior (M-Step). To adjudicate
between models, we compared the leave-one-subject-out
cross-validated likelihood (LikCV, with smaller values
reflecting a better fit).

The two historic classes of task-switching hypotheses
make very different predictions for how task sets change over
the CSI (Figure 4A). The Dynamic models test the continuous
hypothesis, with participants’ average performance changing
over the course of the CSI. We estimated the linear effect of
CSI on reaction time, with an intercept and slope for switch
trials and just an intercept for repeat trials (reflecting the clear
trends from our Mixed Effects Regression).

µswitch = b0 +b1CSI
µrepeat = bR

L = N(logRT|µ,s)
(1)

where L = N(.|µ,s) represents a Gaussian likelihood
function parameterized by a mean (µ) and variance (s).

The Mixture models test the discrete hypothesis, with
performance coming from two different distributions.

Specifically, the likelihood on each trial was the weighted
mixture of two Gaussian likelihoods (corresponding to the
prepared and unprepared states), and this mixture weight
changed as a function of the CSI. Unlike the Dynamic model,
the means of these Gaussian distributions are static (do not
depend on CSI). For convenience, we refer to each Gaussian
as a ‘task state’, without committing to the underlying
representation. These mixture models had the form:

Lswitch = pN(logRT|µ1,s1)+(1�p)N(logRT|µ2,s2)

p = logistic(b0 +b1CSI);b1 < 0
(2)

The first Mixture model we tested was a version of
the original De Jong discrete switching model (De Jong,
2000). In this model, the late ‘prepared’ state is the same
for switching and repeating (i.e., the likelihood on repeat
trials was Lrepeat = N(logRT|µ2,s2)). Compared to the
Dynamic model, we found that the De Jong Mixture model
dramatically improved the model fit (DLikCV = 120; Table
1), consistent with the involvement of a discrete switching
process.

We next tested De Jong’s assumption that switch trials
converge on the same state as repeat trials. We fit the
Static Mixture model, which estimated separate states for
late switch and repeat trials (i.e., the likelihood on repeat
trials was now Lrepeat =N(logRT|µR,sR)). This model further
improved the fit over the De Jong model (DLikCV = 199),
consistent with evidence for persistent differences between
switch and repeat trials, even at long CSIs (i.e., a residual
switch cost; Rogers & Monsell, 1995; Meiran, 1996; Wylie
& Allport, 2000).

While these Mixture models are consistent with a discrete
change in task state, they do not rule out more complex
models of dynamics. In particular, it could be the case
that participants are not switching between two static states
(i.e., Guassians with means that don’t depend on CSI), but
instead switching between discrete states that themselves
have dynamics (Ackerson & Fu, 1970). We explore this
possibility in a class of Hybrid models that extended the Static
Mixture model to include changes in the Gaussian means over
time. In the Static-Dynamic Hybrid, participants switched
from a static process to a dynamic process:

Lswitch = pN(logRT|µ1,s1)+(1�p)N(logRT|µ2,s2)

p = logistic(b0 +b1CSI);b1 < 0
µ1 = a1

µ2 = a0
2 +a1

2CSI

(3)

In the Dynamic Hybrid model, both µ1 and µ2 had
CSI-dependent dynamics. We found that the Static-Dynamic
Hybrid model fit behavior the best, better than the Static
Mixture model (DLikCV = 13) or the Dynamic Hybrid model
(DLikCV = 70). Group-level Bayesian model selection
estimated that 77% of the population will be best fit by
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the Static-Dynamic Hybrid (Posterior Model Probability;
Stephan, Penny, Daunizeau, Moran, & Friston, 2009), and
that there was >99% chance that Static-Dynamic Hybrid was
the most prevalent winning model (Protected Exceedance
Probability; Rigoux & Guigon, 2012). The Static-Dynamic
Hybrid estimated that participants transitioned from an
early state that was time-invariant to a late state in which
performance improved over time (late CSI dynamics (a1

2):
group-level Cohen’s d = �1.0, p = 0.0026). This same
differentiation between early and late states was also
supported by the Dynamic Hybrid model, which estimated
non-significant CSI dynamics for early states (d = 0.015, p =
0.95) and significant improvements over the CSI for late
states (d =�0.99, p = 2.2⇥10�7).

Model Name N DLikCV P(Model) PXP

Dynamic 4 331 0.0355 0
De Jong Mixture 7 212 0.0271 0
Static Mixture 8 13.1 0.134 0
Static-Dynamic

Hybrid
9 0 0.768 1

Dynamic Hybrid 10 70.2 0.0348 0

Table 1: Comparison between Dynamic, Mixture, and Hybrid
models. N: number of fixed-effects parameters. DLikCV:
cross-validated log-likelihood, relative to the best-fitting
model. P(Model): Posterior Model Probability. PXP:
Protected Exceedance Probability.

We validated that our models captured important trends
in the data through posterior predictive checks (Figure 4C).
We plotted single-subject RT distributions for trials within
the shortest and longest CSI quartiles, finding compelling
signatures of bimodality that were captured by our mixture
models. When we simulated behavior from our best-fitting
model, we found that it captures the major trends in the data,
such as the bimodality (a property of the mixture model) and
the leftward shift in the faster mode’s mean (a property of the
dynamic model; see also Figure 3B). Together, these results
are consistent with a mixture of both discrete and dynamic
reconfiguration during task-switching.

Finally, we confirmed these models were identifiable
by our model fitting and model selection processes by
performing model recovery (Figure 4C). We generated a
synthetic dataset from each model, fit each model to these
synthetic datasets, and then tested whether the model that
generated the data was the one with the higher posterior
model probability. We found accurate recovery of the
data-generating models, suggesting that these models make
discriminable predictions in this dataset.

Participants prepare for switching before the task cue

The durations of the mini-blocks were unpredictable: after
the second trial, there was always a 50% chance of
transitioning to the Task Cue. However, since participants
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Figure 4: Model-based analysis of switching dynamics. A)
There were three classes of models: models with continuous
transitions (’Dynamic’), models with discrete transitions
(’Mixture’), and models with both continuous and discrete
transitions (’Hybrid’; best-fitting). Note that the discrete
transition onset is random across trials. B) Behavior
simulated from the best-fitting Static-Dynamic Hybrid model
approximated participants’ RT distributions. Participants are
sorted according to their average model likelihood (left to
right, worst to best fitting). Simulations reflect a single
draw from the model to avoid over-smoothing. B) Model
recovery demonstrated that the ground-truth model could be
selected by our fitting and comparison procedures. Specific
models are ‘Dynamic’, ‘Static Mixture’, and ‘Static-Dynamic
Hybrid’. Model fits are posterior model probabilities on
cross-validated likelihoods.

knew the order of the tasks, they may have nevertheless
anticipated upcoming switch demands, and prepared for them
over the course of the mini-block as the expectation of a
transition increased. Accordingly, we found that participants
responded more slowly on the trial before switches than the
trial before repeats, even though the Task Cue had not yet
appeared (logRT: t = 3.09, p = .0020; Figure 5A). Critically,
this slowing appeared to be strategic: it was associated
with lower RT switch costs on the first trial of the next
mini-block, controlling for baseline autocorrelation (Switch
⇥ PreviousRT: t = �6.43, p < 10�9; Figure 5B). This
suggests that slowing was associated with task preparation
prior to, but presumably in anticipation of, the Task Cue.
This effect of pre-cue slowing on switch costs did not further
interact with CSI (p = .313), suggesting earlier progress
towards the reconfigured state and not faster switching
dynamics.

To assess how pre-cue slowing influenced the discrete
and continuous dynamics modeled above, we included
pre-switch RT as an additional covariate in the best-fitting
Static-Dynamic Hybrid model. We compared distinct
versions of how participants might have prepared for the
upcoming task. In the Transition Preparation model, we
included pre-switch RT in the discrete switching dynamics
(p = logistic(b0 + b1CSI + b2RTt�1)). In the State
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Preparation model, pre-switch RT influenced the late task
state (µ2 = a0

2+a1
2CSI+a2

2RTt�1). Finally, in the Combined
Preparation model, pre-switch RTs influenced both the
transition probability and the late state. We controlled for
baseline autocorrelation by estimating the influence of the
previous RT across all switch and repeat trials (RT⇤

t = RTt �
gRTt�1).
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Figure 5: Pre-cue preparation. A) Participants responded
more slowly on trials leading up to a switch cue. B) The
slower participants respond before a task cue, the lower
their switch costs. C) Model comparison found that pre-cue
preparation was best explained as an earlier transition from
the static task state to the dynamic task state.

We found that the Transition Preparation model fit
participants’ data better than State Preparation (DLikCV =
49; Table 2) or Combined Preparation (DLikCV = 16),
albeit with a moderate exceedance probability (75%). The
model fit suggested that slower pre-switch RTs increased the
probability of switching from the static state to the dynamic
state, though this effect was not significant (d = �0.45, p =
.12; Figure 5C). This selective influence of preparation
on discrete state transitions provides further evidence that
discrete and continuous dynamics are dissociable constructs,
but more research is needed to confirm these trends.

Model Name N DLikCV P(Model) PXP

Transition

Preparation
11 0 0.608 0.749

State Preparation 11 49.0 0.160 0.125
Combined
Preparation 12 16.0 0.233 0.126

Table 2: Comparison between pre-cue preparation models.
N: number of fixed-effects parameters. DLikCV:
cross-validated log-likelihood, relative to the best-fitting
model. P(Model): Posterior Model Probability. PXP:
Protected Exceedance Probability.

Discussion

Researchers have debated for decades whether task set
reconfiguration is a continuous or discrete process (De Jong,

Berendsen, & Cools, 1999; De Jong, 2000; Nieuwenhuis &
Monsell, 2002; Brown, Lehmann, & Poboka, 2006; Gilbert
& Shallice, 2002; Kiesel et al., 2010). We approached
this debate using an experimental paradigm that combines
the strengths of cued and predictable task-switching designs,
while minimizing associative learning confounds. Using
a novel single-trial analysis of continuous and discrete
switch dynamics, we found that task preparation exhibited
characteristics of both hypotheses: people appear to transition
from an unprepared static task state into a task state that
continuously improved performance over the CSI. Moreover,
we found that participants appear to strategically prepare for
upcoming switch demands, which increases the probability
that they will transition into a dynamic state. Our results
provide a new, model-based approach to quantifying how
people switch between tasks, which we used to test existing
hypotheses concerning task set reconfiguration. These
models should be seen as descriptive models, rather than
mechanistic models, but they inform the behavioral patterns
that a process model must capture.

Previous work has suggested that discrete transitions
between task sets may arise due to the success or failure
of recalling the correct task set (Mayr & Keele, 2000;
Monsell, 2003). Speculatively, this may correspond to the
early static task state, with the transition from this state to
the dynamic state reflecting the successful episodic recall
of the upcoming tasks. Perhaps then this transition reflects
an evidence accumulation process (Ratcliff, 1978), sampling
episodic memory to recall the task identity. While this
process may have been emphasized in our task moreso than
in previous experiments, it reflects an important component
of many real-life uses of cognitive flexibility.

Once the goal has been recalled, the second, dynamic task
state may reflect the reconfiguration process hypothesized by
dynamic models of task-switching (Gilbert & Shallice, 2002;
Ueltzhöffer et al., 2015; Steyvers et al., 2019; Musslick et al.,
2019; Ritz, Leng, & Shenhav, 2022). While state dynamics
appeared to be linear in time, longer CSIs may have revealed
that switch-trial performance saturates at or above repeat-trial
performance, as has been consistently observed in previous
experiments (Rogers & Monsell, 1995; Meiran, 1996).

Using similar methods of state identification, future
experiments should attempt to further dissociate the early
and late task states, such as in terms of their sensitivity
to proactive interference or memory aids as signatures of
episodic recall. Our future research aims to use this task to
investigate the neural correlates of task-set reconfiguration,
providing further insight into the latent processes that govern
our cognitive flexibility (Yeung et al., 2006; Esterman,
Chiu, Tamber-Rosenau, & Yantis, 2009; Qiao, Zhang,
Chen, & Egner, 2017; Hubbard, Kikumoto, & Mayr, 2017;
Karayanidis et al., 2023).
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