
Introduction

Task Design

Human participants (n=30) performed a cued 
task-switching experiment during 61-channel 
scalp EEG. Participants responded to either 
shape color or shape identity, depending on 
pre-trial cue (50% switch rate).

Participants performed 10 blocks of 65 trials, 
excluding trials with errors, previous errors, or 
EEG artifacts (M=469 trials). 

Dynamic Encoding

Discussion
- Task encoding dynamically evolves throughout preparation
- Dynamical systems models are a good �t to EEG data
- Task-dependent dynamics are non-stationary or periodic

Next Steps: 
- Replicate in other task-switching datasets
- Measure neural correlates using MEG
- Test optimal control theories
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EEG Analysis
EEG data were preprocessed in the original 
experiment. We used regression baseline 
(300ms - 50ms before task cue onset).

Encoding Geometry Analysis: Linear 
encoding models were �t at each timepoint, 
separately for even and odd runs. Electrode 
regression weights were correlated across runs 
to test encoding reliability and alignment.

State Space Inference: We modeled the EEG 
activity as a latent dynamical system, mapping 
a latent system (x, e.g. neural sources) to an 
observed system (y, electrode voltage). Task 
conditions were inputs to the latent system. We 
used linear dynamics and observations with 
Gaussian noise.

We estimated the system parameters using a 
custom Julia implementation of Expectation 
Maximization, which has e�cient analytic 
methods for inferring linear-gussian systems. 
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Input Encoding

A) We replicated robust pre-stimulus task encoding, with di�erent 
timecourse from value cue features.

B) Temporal generalization shows dynamic task encoding (e.g., relatively 
poor generalization from cue period to task period).

C) Higher dimensional latent spaces �t held-out 
data better.

D) Our best-�tting model made good single-trial 
predictions for held-out data, using the standard 
methods of �ltering test trials with estimated 
parameters.

E) Input magnitude phasically increased during 
the cue period

F) Temporal similarity of input dimensions 
consistent with periodic encoding

G) Average latent trajectories for two example 
participants, plotted on their principal 
components

H) Average latent trajectory for a third participant, 
projected into the average task-invariant and 
task-encoding input dimensions
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Thanks to Sam Hall-McMaster for making his 
project open source and providing helpful 
guidance. This project is dedicated to the 
memory of Mark Stokes.
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Task sets de�ne the mappings between our 
perception and our actions. How does our brain 
transition between di�erent task sets?

Computational cognitive theories 
have suggested that our transitions 
can be understood using dynamical 
systems theory, with neurally 
plausible process models. However, 
there is limited neural evidence 
support these dynamical models.

Here, we re-analyzed a recent task-switching 
neuroimaing experiment to explicitly test the 
dynamical switching hypothesis. Using tools from 
systems neuroscience for estimating latent 
dynamical systems, we show the neural dynamics 
support task recon�guration.
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