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Here, we re-analyzed a recent task-switching
neuroimaing experiment to explicitly test the
dynamical switching hypothesis. Using tools from
systems neuroscience for estimating latent
dynamical systems, we show the neural dynamics o
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A) We replicated robust pre-stimulus task encoding, with different

Ta S k Des i g N timecourse from value cue features.

B) Temporal generalization shows dynamic task encoding (e.g., relatively
poor generalization from cue period to task period).
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excluding trials with errors, previous errors, or
EEG artifacts (M=469 trials).
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encoding models were fit at each timepoint, task-encoding input dimensions
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State Space Inference: We modeled the EEG o
activity as a latent dynamical system, mapping S |
a latent system (x, e.g. neural sources) to an Start
observed system (y, electrode voltage). Task
conditions were inputs to the latent system. We . . . .
used linear dynamics and observations with Task-Independent
Gaussian noise.,
We estimated the system parameters using a D ISCUSSION
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